Solve for m
m=\sqrt{5}+3\approx 5.236067977
m=3-\sqrt{5}\approx 0.763932023
Share
Copied to clipboard
m^{2}-6m+5=1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m^{2}-6m+5-1=1-1
Subtract 1 from both sides of the equation.
m^{2}-6m+5-1=0
Subtracting 1 from itself leaves 0.
m^{2}-6m+4=0
Subtract 1 from 5.
m=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -6 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-6\right)±\sqrt{36-4\times 4}}{2}
Square -6.
m=\frac{-\left(-6\right)±\sqrt{36-16}}{2}
Multiply -4 times 4.
m=\frac{-\left(-6\right)±\sqrt{20}}{2}
Add 36 to -16.
m=\frac{-\left(-6\right)±2\sqrt{5}}{2}
Take the square root of 20.
m=\frac{6±2\sqrt{5}}{2}
The opposite of -6 is 6.
m=\frac{2\sqrt{5}+6}{2}
Now solve the equation m=\frac{6±2\sqrt{5}}{2} when ± is plus. Add 6 to 2\sqrt{5}.
m=\sqrt{5}+3
Divide 6+2\sqrt{5} by 2.
m=\frac{6-2\sqrt{5}}{2}
Now solve the equation m=\frac{6±2\sqrt{5}}{2} when ± is minus. Subtract 2\sqrt{5} from 6.
m=3-\sqrt{5}
Divide 6-2\sqrt{5} by 2.
m=\sqrt{5}+3 m=3-\sqrt{5}
The equation is now solved.
m^{2}-6m+5=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
m^{2}-6m+5-5=1-5
Subtract 5 from both sides of the equation.
m^{2}-6m=1-5
Subtracting 5 from itself leaves 0.
m^{2}-6m=-4
Subtract 5 from 1.
m^{2}-6m+\left(-3\right)^{2}=-4+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-6m+9=-4+9
Square -3.
m^{2}-6m+9=5
Add -4 to 9.
\left(m-3\right)^{2}=5
Factor m^{2}-6m+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-3\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
m-3=\sqrt{5} m-3=-\sqrt{5}
Simplify.
m=\sqrt{5}+3 m=3-\sqrt{5}
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}