Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

2m^{2}-8m+16+m^{2}-12m+40=m^{2}-4m+8
Multiply both sides of the equation by 2.
3m^{2}-8m+16-12m+40=m^{2}-4m+8
Combine 2m^{2} and m^{2} to get 3m^{2}.
3m^{2}-20m+16+40=m^{2}-4m+8
Combine -8m and -12m to get -20m.
3m^{2}-20m+56=m^{2}-4m+8
Add 16 and 40 to get 56.
3m^{2}-20m+56-m^{2}=-4m+8
Subtract m^{2} from both sides.
2m^{2}-20m+56=-4m+8
Combine 3m^{2} and -m^{2} to get 2m^{2}.
2m^{2}-20m+56+4m=8
Add 4m to both sides.
2m^{2}-16m+56=8
Combine -20m and 4m to get -16m.
2m^{2}-16m+56-8=0
Subtract 8 from both sides.
2m^{2}-16m+48=0
Subtract 8 from 56 to get 48.
m=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 2\times 48}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -16 for b, and 48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-16\right)±\sqrt{256-4\times 2\times 48}}{2\times 2}
Square -16.
m=\frac{-\left(-16\right)±\sqrt{256-8\times 48}}{2\times 2}
Multiply -4 times 2.
m=\frac{-\left(-16\right)±\sqrt{256-384}}{2\times 2}
Multiply -8 times 48.
m=\frac{-\left(-16\right)±\sqrt{-128}}{2\times 2}
Add 256 to -384.
m=\frac{-\left(-16\right)±8\sqrt{2}i}{2\times 2}
Take the square root of -128.
m=\frac{16±8\sqrt{2}i}{2\times 2}
The opposite of -16 is 16.
m=\frac{16±8\sqrt{2}i}{4}
Multiply 2 times 2.
m=\frac{16+2^{\frac{7}{2}}i}{4}
Now solve the equation m=\frac{16±8\sqrt{2}i}{4} when ± is plus. Add 16 to 8i\sqrt{2}.
m=4+2\sqrt{2}i
Divide 16+i\times 2^{\frac{7}{2}} by 4.
m=\frac{-2^{\frac{7}{2}}i+16}{4}
Now solve the equation m=\frac{16±8\sqrt{2}i}{4} when ± is minus. Subtract 8i\sqrt{2} from 16.
m=-2\sqrt{2}i+4
Divide 16-i\times 2^{\frac{7}{2}} by 4.
m=4+2\sqrt{2}i m=-2\sqrt{2}i+4
The equation is now solved.
2m^{2}-8m+16+m^{2}-12m+40=m^{2}-4m+8
Multiply both sides of the equation by 2.
3m^{2}-8m+16-12m+40=m^{2}-4m+8
Combine 2m^{2} and m^{2} to get 3m^{2}.
3m^{2}-20m+16+40=m^{2}-4m+8
Combine -8m and -12m to get -20m.
3m^{2}-20m+56=m^{2}-4m+8
Add 16 and 40 to get 56.
3m^{2}-20m+56-m^{2}=-4m+8
Subtract m^{2} from both sides.
2m^{2}-20m+56=-4m+8
Combine 3m^{2} and -m^{2} to get 2m^{2}.
2m^{2}-20m+56+4m=8
Add 4m to both sides.
2m^{2}-16m+56=8
Combine -20m and 4m to get -16m.
2m^{2}-16m=8-56
Subtract 56 from both sides.
2m^{2}-16m=-48
Subtract 56 from 8 to get -48.
\frac{2m^{2}-16m}{2}=-\frac{48}{2}
Divide both sides by 2.
m^{2}+\left(-\frac{16}{2}\right)m=-\frac{48}{2}
Dividing by 2 undoes the multiplication by 2.
m^{2}-8m=-\frac{48}{2}
Divide -16 by 2.
m^{2}-8m=-24
Divide -48 by 2.
m^{2}-8m+\left(-4\right)^{2}=-24+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-8m+16=-24+16
Square -4.
m^{2}-8m+16=-8
Add -24 to 16.
\left(m-4\right)^{2}=-8
Factor m^{2}-8m+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-4\right)^{2}}=\sqrt{-8}
Take the square root of both sides of the equation.
m-4=2\sqrt{2}i m-4=-2\sqrt{2}i
Simplify.
m=4+2\sqrt{2}i m=-2\sqrt{2}i+4
Add 4 to both sides of the equation.