Solve for m
m=\frac{3\sqrt{2}}{2}+1\approx 3.121320344
m=-\frac{3\sqrt{2}}{2}+1\approx -1.121320344
Share
Copied to clipboard
m^{2}-2m-3=\frac{1}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m^{2}-2m-3-\frac{1}{2}=\frac{1}{2}-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.
m^{2}-2m-3-\frac{1}{2}=0
Subtracting \frac{1}{2} from itself leaves 0.
m^{2}-2m-\frac{7}{2}=0
Subtract \frac{1}{2} from -3.
m=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-\frac{7}{2}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and -\frac{7}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-2\right)±\sqrt{4-4\left(-\frac{7}{2}\right)}}{2}
Square -2.
m=\frac{-\left(-2\right)±\sqrt{4+14}}{2}
Multiply -4 times -\frac{7}{2}.
m=\frac{-\left(-2\right)±\sqrt{18}}{2}
Add 4 to 14.
m=\frac{-\left(-2\right)±3\sqrt{2}}{2}
Take the square root of 18.
m=\frac{2±3\sqrt{2}}{2}
The opposite of -2 is 2.
m=\frac{3\sqrt{2}+2}{2}
Now solve the equation m=\frac{2±3\sqrt{2}}{2} when ± is plus. Add 2 to 3\sqrt{2}.
m=\frac{3\sqrt{2}}{2}+1
Divide 2+3\sqrt{2} by 2.
m=\frac{2-3\sqrt{2}}{2}
Now solve the equation m=\frac{2±3\sqrt{2}}{2} when ± is minus. Subtract 3\sqrt{2} from 2.
m=-\frac{3\sqrt{2}}{2}+1
Divide 2-3\sqrt{2} by 2.
m=\frac{3\sqrt{2}}{2}+1 m=-\frac{3\sqrt{2}}{2}+1
The equation is now solved.
m^{2}-2m-3=\frac{1}{2}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
m^{2}-2m-3-\left(-3\right)=\frac{1}{2}-\left(-3\right)
Add 3 to both sides of the equation.
m^{2}-2m=\frac{1}{2}-\left(-3\right)
Subtracting -3 from itself leaves 0.
m^{2}-2m=\frac{7}{2}
Subtract -3 from \frac{1}{2}.
m^{2}-2m+1=\frac{7}{2}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-2m+1=\frac{9}{2}
Add \frac{7}{2} to 1.
\left(m-1\right)^{2}=\frac{9}{2}
Factor m^{2}-2m+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-1\right)^{2}}=\sqrt{\frac{9}{2}}
Take the square root of both sides of the equation.
m-1=\frac{3\sqrt{2}}{2} m-1=-\frac{3\sqrt{2}}{2}
Simplify.
m=\frac{3\sqrt{2}}{2}+1 m=-\frac{3\sqrt{2}}{2}+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}