Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

m\left(m-16\right)=0
Factor out m.
m=0 m=16
To find equation solutions, solve m=0 and m-16=0.
m^{2}-16m=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -16 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-16\right)±16}{2}
Take the square root of \left(-16\right)^{2}.
m=\frac{16±16}{2}
The opposite of -16 is 16.
m=\frac{32}{2}
Now solve the equation m=\frac{16±16}{2} when ± is plus. Add 16 to 16.
m=16
Divide 32 by 2.
m=\frac{0}{2}
Now solve the equation m=\frac{16±16}{2} when ± is minus. Subtract 16 from 16.
m=0
Divide 0 by 2.
m=16 m=0
The equation is now solved.
m^{2}-16m=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
m^{2}-16m+\left(-8\right)^{2}=\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-16m+64=64
Square -8.
\left(m-8\right)^{2}=64
Factor m^{2}-16m+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-8\right)^{2}}=\sqrt{64}
Take the square root of both sides of the equation.
m-8=8 m-8=-8
Simplify.
m=16 m=0
Add 8 to both sides of the equation.