Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

m^{2}-8m=14
Subtract 8m from both sides.
m^{2}-8m-14=0
Subtract 14 from both sides.
m=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-14\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-8\right)±\sqrt{64-4\left(-14\right)}}{2}
Square -8.
m=\frac{-\left(-8\right)±\sqrt{64+56}}{2}
Multiply -4 times -14.
m=\frac{-\left(-8\right)±\sqrt{120}}{2}
Add 64 to 56.
m=\frac{-\left(-8\right)±2\sqrt{30}}{2}
Take the square root of 120.
m=\frac{8±2\sqrt{30}}{2}
The opposite of -8 is 8.
m=\frac{2\sqrt{30}+8}{2}
Now solve the equation m=\frac{8±2\sqrt{30}}{2} when ± is plus. Add 8 to 2\sqrt{30}.
m=\sqrt{30}+4
Divide 8+2\sqrt{30} by 2.
m=\frac{8-2\sqrt{30}}{2}
Now solve the equation m=\frac{8±2\sqrt{30}}{2} when ± is minus. Subtract 2\sqrt{30} from 8.
m=4-\sqrt{30}
Divide 8-2\sqrt{30} by 2.
m=\sqrt{30}+4 m=4-\sqrt{30}
The equation is now solved.
m^{2}-8m=14
Subtract 8m from both sides.
m^{2}-8m+\left(-4\right)^{2}=14+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-8m+16=14+16
Square -4.
m^{2}-8m+16=30
Add 14 to 16.
\left(m-4\right)^{2}=30
Factor m^{2}-8m+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-4\right)^{2}}=\sqrt{30}
Take the square root of both sides of the equation.
m-4=\sqrt{30} m-4=-\sqrt{30}
Simplify.
m=\sqrt{30}+4 m=4-\sqrt{30}
Add 4 to both sides of the equation.