Solve for m
m=-12
m=10
Share
Copied to clipboard
m^{2}+2m=120
Add 2m to both sides.
m^{2}+2m-120=0
Subtract 120 from both sides.
a+b=2 ab=-120
To solve the equation, factor m^{2}+2m-120 using formula m^{2}+\left(a+b\right)m+ab=\left(m+a\right)\left(m+b\right). To find a and b, set up a system to be solved.
-1,120 -2,60 -3,40 -4,30 -5,24 -6,20 -8,15 -10,12
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -120.
-1+120=119 -2+60=58 -3+40=37 -4+30=26 -5+24=19 -6+20=14 -8+15=7 -10+12=2
Calculate the sum for each pair.
a=-10 b=12
The solution is the pair that gives sum 2.
\left(m-10\right)\left(m+12\right)
Rewrite factored expression \left(m+a\right)\left(m+b\right) using the obtained values.
m=10 m=-12
To find equation solutions, solve m-10=0 and m+12=0.
m^{2}+2m=120
Add 2m to both sides.
m^{2}+2m-120=0
Subtract 120 from both sides.
a+b=2 ab=1\left(-120\right)=-120
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as m^{2}+am+bm-120. To find a and b, set up a system to be solved.
-1,120 -2,60 -3,40 -4,30 -5,24 -6,20 -8,15 -10,12
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -120.
-1+120=119 -2+60=58 -3+40=37 -4+30=26 -5+24=19 -6+20=14 -8+15=7 -10+12=2
Calculate the sum for each pair.
a=-10 b=12
The solution is the pair that gives sum 2.
\left(m^{2}-10m\right)+\left(12m-120\right)
Rewrite m^{2}+2m-120 as \left(m^{2}-10m\right)+\left(12m-120\right).
m\left(m-10\right)+12\left(m-10\right)
Factor out m in the first and 12 in the second group.
\left(m-10\right)\left(m+12\right)
Factor out common term m-10 by using distributive property.
m=10 m=-12
To find equation solutions, solve m-10=0 and m+12=0.
m^{2}+2m=120
Add 2m to both sides.
m^{2}+2m-120=0
Subtract 120 from both sides.
m=\frac{-2±\sqrt{2^{2}-4\left(-120\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and -120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-2±\sqrt{4-4\left(-120\right)}}{2}
Square 2.
m=\frac{-2±\sqrt{4+480}}{2}
Multiply -4 times -120.
m=\frac{-2±\sqrt{484}}{2}
Add 4 to 480.
m=\frac{-2±22}{2}
Take the square root of 484.
m=\frac{20}{2}
Now solve the equation m=\frac{-2±22}{2} when ± is plus. Add -2 to 22.
m=10
Divide 20 by 2.
m=-\frac{24}{2}
Now solve the equation m=\frac{-2±22}{2} when ± is minus. Subtract 22 from -2.
m=-12
Divide -24 by 2.
m=10 m=-12
The equation is now solved.
m^{2}+2m=120
Add 2m to both sides.
m^{2}+2m+1^{2}=120+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+2m+1=120+1
Square 1.
m^{2}+2m+1=121
Add 120 to 1.
\left(m+1\right)^{2}=121
Factor m^{2}+2m+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+1\right)^{2}}=\sqrt{121}
Take the square root of both sides of the equation.
m+1=11 m+1=-11
Simplify.
m=10 m=-12
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}