Skip to main content
Solve for m (complex solution)
Tick mark Image
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

m^{2}+8m+12=-1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m^{2}+8m+12-\left(-1\right)=-1-\left(-1\right)
Add 1 to both sides of the equation.
m^{2}+8m+12-\left(-1\right)=0
Subtracting -1 from itself leaves 0.
m^{2}+8m+13=0
Subtract -1 from 12.
m=\frac{-8±\sqrt{8^{2}-4\times 13}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and 13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-8±\sqrt{64-4\times 13}}{2}
Square 8.
m=\frac{-8±\sqrt{64-52}}{2}
Multiply -4 times 13.
m=\frac{-8±\sqrt{12}}{2}
Add 64 to -52.
m=\frac{-8±2\sqrt{3}}{2}
Take the square root of 12.
m=\frac{2\sqrt{3}-8}{2}
Now solve the equation m=\frac{-8±2\sqrt{3}}{2} when ± is plus. Add -8 to 2\sqrt{3}.
m=\sqrt{3}-4
Divide -8+2\sqrt{3} by 2.
m=\frac{-2\sqrt{3}-8}{2}
Now solve the equation m=\frac{-8±2\sqrt{3}}{2} when ± is minus. Subtract 2\sqrt{3} from -8.
m=-\sqrt{3}-4
Divide -8-2\sqrt{3} by 2.
m=\sqrt{3}-4 m=-\sqrt{3}-4
The equation is now solved.
m^{2}+8m+12=-1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
m^{2}+8m+12-12=-1-12
Subtract 12 from both sides of the equation.
m^{2}+8m=-1-12
Subtracting 12 from itself leaves 0.
m^{2}+8m=-13
Subtract 12 from -1.
m^{2}+8m+4^{2}=-13+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+8m+16=-13+16
Square 4.
m^{2}+8m+16=3
Add -13 to 16.
\left(m+4\right)^{2}=3
Factor m^{2}+8m+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+4\right)^{2}}=\sqrt{3}
Take the square root of both sides of the equation.
m+4=\sqrt{3} m+4=-\sqrt{3}
Simplify.
m=\sqrt{3}-4 m=-\sqrt{3}-4
Subtract 4 from both sides of the equation.
m^{2}+8m+12=-1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m^{2}+8m+12-\left(-1\right)=-1-\left(-1\right)
Add 1 to both sides of the equation.
m^{2}+8m+12-\left(-1\right)=0
Subtracting -1 from itself leaves 0.
m^{2}+8m+13=0
Subtract -1 from 12.
m=\frac{-8±\sqrt{8^{2}-4\times 13}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and 13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-8±\sqrt{64-4\times 13}}{2}
Square 8.
m=\frac{-8±\sqrt{64-52}}{2}
Multiply -4 times 13.
m=\frac{-8±\sqrt{12}}{2}
Add 64 to -52.
m=\frac{-8±2\sqrt{3}}{2}
Take the square root of 12.
m=\frac{2\sqrt{3}-8}{2}
Now solve the equation m=\frac{-8±2\sqrt{3}}{2} when ± is plus. Add -8 to 2\sqrt{3}.
m=\sqrt{3}-4
Divide -8+2\sqrt{3} by 2.
m=\frac{-2\sqrt{3}-8}{2}
Now solve the equation m=\frac{-8±2\sqrt{3}}{2} when ± is minus. Subtract 2\sqrt{3} from -8.
m=-\sqrt{3}-4
Divide -8-2\sqrt{3} by 2.
m=\sqrt{3}-4 m=-\sqrt{3}-4
The equation is now solved.
m^{2}+8m+12=-1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
m^{2}+8m+12-12=-1-12
Subtract 12 from both sides of the equation.
m^{2}+8m=-1-12
Subtracting 12 from itself leaves 0.
m^{2}+8m=-13
Subtract 12 from -1.
m^{2}+8m+4^{2}=-13+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+8m+16=-13+16
Square 4.
m^{2}+8m+16=3
Add -13 to 16.
\left(m+4\right)^{2}=3
Factor m^{2}+8m+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+4\right)^{2}}=\sqrt{3}
Take the square root of both sides of the equation.
m+4=\sqrt{3} m+4=-\sqrt{3}
Simplify.
m=\sqrt{3}-4 m=-\sqrt{3}-4
Subtract 4 from both sides of the equation.