Solve for m
m=5\sqrt{97}+50\approx 99.244289009
m=50-5\sqrt{97}\approx 0.755710991
Share
Copied to clipboard
m^{2}+75-100m=0
Subtract 100m from both sides.
m^{2}-100m+75=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-100\right)±\sqrt{\left(-100\right)^{2}-4\times 75}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -100 for b, and 75 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-100\right)±\sqrt{10000-4\times 75}}{2}
Square -100.
m=\frac{-\left(-100\right)±\sqrt{10000-300}}{2}
Multiply -4 times 75.
m=\frac{-\left(-100\right)±\sqrt{9700}}{2}
Add 10000 to -300.
m=\frac{-\left(-100\right)±10\sqrt{97}}{2}
Take the square root of 9700.
m=\frac{100±10\sqrt{97}}{2}
The opposite of -100 is 100.
m=\frac{10\sqrt{97}+100}{2}
Now solve the equation m=\frac{100±10\sqrt{97}}{2} when ± is plus. Add 100 to 10\sqrt{97}.
m=5\sqrt{97}+50
Divide 100+10\sqrt{97} by 2.
m=\frac{100-10\sqrt{97}}{2}
Now solve the equation m=\frac{100±10\sqrt{97}}{2} when ± is minus. Subtract 10\sqrt{97} from 100.
m=50-5\sqrt{97}
Divide 100-10\sqrt{97} by 2.
m=5\sqrt{97}+50 m=50-5\sqrt{97}
The equation is now solved.
m^{2}+75-100m=0
Subtract 100m from both sides.
m^{2}-100m=-75
Subtract 75 from both sides. Anything subtracted from zero gives its negation.
m^{2}-100m+\left(-50\right)^{2}=-75+\left(-50\right)^{2}
Divide -100, the coefficient of the x term, by 2 to get -50. Then add the square of -50 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-100m+2500=-75+2500
Square -50.
m^{2}-100m+2500=2425
Add -75 to 2500.
\left(m-50\right)^{2}=2425
Factor m^{2}-100m+2500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-50\right)^{2}}=\sqrt{2425}
Take the square root of both sides of the equation.
m-50=5\sqrt{97} m-50=-5\sqrt{97}
Simplify.
m=5\sqrt{97}+50 m=50-5\sqrt{97}
Add 50 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}