Solve for m (complex solution)
m=\sqrt{89}-8\approx 1.433981132
m=-\left(\sqrt{89}+8\right)\approx -17.433981132
Solve for m
m=\sqrt{89}-8\approx 1.433981132
m=-\sqrt{89}-8\approx -17.433981132
Share
Copied to clipboard
m^{2}+16m-32=-7
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m^{2}+16m-32-\left(-7\right)=-7-\left(-7\right)
Add 7 to both sides of the equation.
m^{2}+16m-32-\left(-7\right)=0
Subtracting -7 from itself leaves 0.
m^{2}+16m-25=0
Subtract -7 from -32.
m=\frac{-16±\sqrt{16^{2}-4\left(-25\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 16 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-16±\sqrt{256-4\left(-25\right)}}{2}
Square 16.
m=\frac{-16±\sqrt{256+100}}{2}
Multiply -4 times -25.
m=\frac{-16±\sqrt{356}}{2}
Add 256 to 100.
m=\frac{-16±2\sqrt{89}}{2}
Take the square root of 356.
m=\frac{2\sqrt{89}-16}{2}
Now solve the equation m=\frac{-16±2\sqrt{89}}{2} when ± is plus. Add -16 to 2\sqrt{89}.
m=\sqrt{89}-8
Divide -16+2\sqrt{89} by 2.
m=\frac{-2\sqrt{89}-16}{2}
Now solve the equation m=\frac{-16±2\sqrt{89}}{2} when ± is minus. Subtract 2\sqrt{89} from -16.
m=-\sqrt{89}-8
Divide -16-2\sqrt{89} by 2.
m=\sqrt{89}-8 m=-\sqrt{89}-8
The equation is now solved.
m^{2}+16m-32=-7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
m^{2}+16m-32-\left(-32\right)=-7-\left(-32\right)
Add 32 to both sides of the equation.
m^{2}+16m=-7-\left(-32\right)
Subtracting -32 from itself leaves 0.
m^{2}+16m=25
Subtract -32 from -7.
m^{2}+16m+8^{2}=25+8^{2}
Divide 16, the coefficient of the x term, by 2 to get 8. Then add the square of 8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+16m+64=25+64
Square 8.
m^{2}+16m+64=89
Add 25 to 64.
\left(m+8\right)^{2}=89
Factor m^{2}+16m+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+8\right)^{2}}=\sqrt{89}
Take the square root of both sides of the equation.
m+8=\sqrt{89} m+8=-\sqrt{89}
Simplify.
m=\sqrt{89}-8 m=-\sqrt{89}-8
Subtract 8 from both sides of the equation.
m^{2}+16m-32=-7
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m^{2}+16m-32-\left(-7\right)=-7-\left(-7\right)
Add 7 to both sides of the equation.
m^{2}+16m-32-\left(-7\right)=0
Subtracting -7 from itself leaves 0.
m^{2}+16m-25=0
Subtract -7 from -32.
m=\frac{-16±\sqrt{16^{2}-4\left(-25\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 16 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-16±\sqrt{256-4\left(-25\right)}}{2}
Square 16.
m=\frac{-16±\sqrt{256+100}}{2}
Multiply -4 times -25.
m=\frac{-16±\sqrt{356}}{2}
Add 256 to 100.
m=\frac{-16±2\sqrt{89}}{2}
Take the square root of 356.
m=\frac{2\sqrt{89}-16}{2}
Now solve the equation m=\frac{-16±2\sqrt{89}}{2} when ± is plus. Add -16 to 2\sqrt{89}.
m=\sqrt{89}-8
Divide -16+2\sqrt{89} by 2.
m=\frac{-2\sqrt{89}-16}{2}
Now solve the equation m=\frac{-16±2\sqrt{89}}{2} when ± is minus. Subtract 2\sqrt{89} from -16.
m=-\sqrt{89}-8
Divide -16-2\sqrt{89} by 2.
m=\sqrt{89}-8 m=-\sqrt{89}-8
The equation is now solved.
m^{2}+16m-32=-7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
m^{2}+16m-32-\left(-32\right)=-7-\left(-32\right)
Add 32 to both sides of the equation.
m^{2}+16m=-7-\left(-32\right)
Subtracting -32 from itself leaves 0.
m^{2}+16m=25
Subtract -32 from -7.
m^{2}+16m+8^{2}=25+8^{2}
Divide 16, the coefficient of the x term, by 2 to get 8. Then add the square of 8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+16m+64=25+64
Square 8.
m^{2}+16m+64=89
Add 25 to 64.
\left(m+8\right)^{2}=89
Factor m^{2}+16m+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+8\right)^{2}}=\sqrt{89}
Take the square root of both sides of the equation.
m+8=\sqrt{89} m+8=-\sqrt{89}
Simplify.
m=\sqrt{89}-8 m=-\sqrt{89}-8
Subtract 8 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}