Solve for m
m=\sqrt{34}-6\approx -0.169048105
m=-\sqrt{34}-6\approx -11.830951895
Share
Copied to clipboard
m^{2}+12m=-2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m^{2}+12m-\left(-2\right)=-2-\left(-2\right)
Add 2 to both sides of the equation.
m^{2}+12m-\left(-2\right)=0
Subtracting -2 from itself leaves 0.
m^{2}+12m+2=0
Subtract -2 from 0.
m=\frac{-12±\sqrt{12^{2}-4\times 2}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 12 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-12±\sqrt{144-4\times 2}}{2}
Square 12.
m=\frac{-12±\sqrt{144-8}}{2}
Multiply -4 times 2.
m=\frac{-12±\sqrt{136}}{2}
Add 144 to -8.
m=\frac{-12±2\sqrt{34}}{2}
Take the square root of 136.
m=\frac{2\sqrt{34}-12}{2}
Now solve the equation m=\frac{-12±2\sqrt{34}}{2} when ± is plus. Add -12 to 2\sqrt{34}.
m=\sqrt{34}-6
Divide -12+2\sqrt{34} by 2.
m=\frac{-2\sqrt{34}-12}{2}
Now solve the equation m=\frac{-12±2\sqrt{34}}{2} when ± is minus. Subtract 2\sqrt{34} from -12.
m=-\sqrt{34}-6
Divide -12-2\sqrt{34} by 2.
m=\sqrt{34}-6 m=-\sqrt{34}-6
The equation is now solved.
m^{2}+12m=-2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
m^{2}+12m+6^{2}=-2+6^{2}
Divide 12, the coefficient of the x term, by 2 to get 6. Then add the square of 6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+12m+36=-2+36
Square 6.
m^{2}+12m+36=34
Add -2 to 36.
\left(m+6\right)^{2}=34
Factor m^{2}+12m+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+6\right)^{2}}=\sqrt{34}
Take the square root of both sides of the equation.
m+6=\sqrt{34} m+6=-\sqrt{34}
Simplify.
m=\sqrt{34}-6 m=-\sqrt{34}-6
Subtract 6 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}