Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

m^{2}+m^{2}+8m+16=\left(m+\frac{8}{5}\right)^{2}+\left(m+\frac{27}{5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(m+4\right)^{2}.
2m^{2}+8m+16=\left(m+\frac{8}{5}\right)^{2}+\left(m+\frac{27}{5}\right)^{2}
Combine m^{2} and m^{2} to get 2m^{2}.
2m^{2}+8m+16=m^{2}+\frac{16}{5}m+\frac{64}{25}+\left(m+\frac{27}{5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(m+\frac{8}{5}\right)^{2}.
2m^{2}+8m+16=m^{2}+\frac{16}{5}m+\frac{64}{25}+m^{2}+\frac{54}{5}m+\frac{729}{25}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(m+\frac{27}{5}\right)^{2}.
2m^{2}+8m+16=2m^{2}+\frac{16}{5}m+\frac{64}{25}+\frac{54}{5}m+\frac{729}{25}
Combine m^{2} and m^{2} to get 2m^{2}.
2m^{2}+8m+16=2m^{2}+14m+\frac{64}{25}+\frac{729}{25}
Combine \frac{16}{5}m and \frac{54}{5}m to get 14m.
2m^{2}+8m+16=2m^{2}+14m+\frac{793}{25}
Add \frac{64}{25} and \frac{729}{25} to get \frac{793}{25}.
2m^{2}+8m+16-2m^{2}=14m+\frac{793}{25}
Subtract 2m^{2} from both sides.
8m+16=14m+\frac{793}{25}
Combine 2m^{2} and -2m^{2} to get 0.
8m+16-14m=\frac{793}{25}
Subtract 14m from both sides.
-6m+16=\frac{793}{25}
Combine 8m and -14m to get -6m.
-6m=\frac{793}{25}-16
Subtract 16 from both sides.
-6m=\frac{393}{25}
Subtract 16 from \frac{793}{25} to get \frac{393}{25}.
m=\frac{\frac{393}{25}}{-6}
Divide both sides by -6.
m=\frac{393}{25\left(-6\right)}
Express \frac{\frac{393}{25}}{-6} as a single fraction.
m=\frac{393}{-150}
Multiply 25 and -6 to get -150.
m=-\frac{131}{50}
Reduce the fraction \frac{393}{-150} to lowest terms by extracting and canceling out 3.