Solve for x
x=-\frac{m^{2}+m-1}{2m-1}
m\neq \frac{1}{2}
Solve for m
m=\frac{\sqrt{4x^{2}+8x+5}}{2}-x-\frac{1}{2}
m=-\frac{\sqrt{4x^{2}+8x+5}}{2}-x-\frac{1}{2}
Graph
Share
Copied to clipboard
m^{2}+2mx-x+m-1=0
Use the distributive property to multiply 2m-1 by x.
2mx-x+m-1=-m^{2}
Subtract m^{2} from both sides. Anything subtracted from zero gives its negation.
2mx-x-1=-m^{2}-m
Subtract m from both sides.
2mx-x=-m^{2}-m+1
Add 1 to both sides.
\left(2m-1\right)x=-m^{2}-m+1
Combine all terms containing x.
\left(2m-1\right)x=1-m-m^{2}
The equation is in standard form.
\frac{\left(2m-1\right)x}{2m-1}=\frac{1-m-m^{2}}{2m-1}
Divide both sides by 2m-1.
x=\frac{1-m-m^{2}}{2m-1}
Dividing by 2m-1 undoes the multiplication by 2m-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}