Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

m^{2}=125-\frac{25}{4}
Subtract \frac{25}{4} from both sides.
m^{2}=\frac{475}{4}
Subtract \frac{25}{4} from 125 to get \frac{475}{4}.
m=\frac{5\sqrt{19}}{2} m=-\frac{5\sqrt{19}}{2}
Take the square root of both sides of the equation.
m^{2}+\frac{25}{4}-125=0
Subtract 125 from both sides.
m^{2}-\frac{475}{4}=0
Subtract 125 from \frac{25}{4} to get -\frac{475}{4}.
m=\frac{0±\sqrt{0^{2}-4\left(-\frac{475}{4}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{475}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{0±\sqrt{-4\left(-\frac{475}{4}\right)}}{2}
Square 0.
m=\frac{0±\sqrt{475}}{2}
Multiply -4 times -\frac{475}{4}.
m=\frac{0±5\sqrt{19}}{2}
Take the square root of 475.
m=\frac{5\sqrt{19}}{2}
Now solve the equation m=\frac{0±5\sqrt{19}}{2} when ± is plus.
m=-\frac{5\sqrt{19}}{2}
Now solve the equation m=\frac{0±5\sqrt{19}}{2} when ± is minus.
m=\frac{5\sqrt{19}}{2} m=-\frac{5\sqrt{19}}{2}
The equation is now solved.