Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

m^{3}n^{6}\left(m^{9}-n^{9}\right)
Factor out m^{3}n^{6}.
\left(m^{3}-n^{3}\right)\left(m^{6}+m^{3}n^{3}+n^{6}\right)
Consider m^{9}-n^{9}. Rewrite m^{9}-n^{9} as \left(m^{3}\right)^{3}-\left(n^{3}\right)^{3}. The difference of cubes can be factored using the rule: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\left(m-n\right)\left(m^{2}+mn+n^{2}\right)
Consider m^{3}-n^{3}. The difference of cubes can be factored using the rule: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
m^{3}n^{6}\left(m-n\right)\left(m^{2}+mn+n^{2}\right)\left(m^{6}+m^{3}n^{3}+n^{6}\right)
Rewrite the complete factored expression.