m = - \frac { 1 } { 2 } \quad P ( 4,2 )
Solve for P
P=-\frac{10m}{21}
Solve for m
m=-\frac{21P}{10}
Share
Copied to clipboard
m=-\frac{21}{10}P
Multiply -\frac{1}{2} and 4,2 to get -\frac{21}{10}.
-\frac{21}{10}P=m
Swap sides so that all variable terms are on the left hand side.
\frac{-\frac{21}{10}P}{-\frac{21}{10}}=\frac{m}{-\frac{21}{10}}
Divide both sides of the equation by -\frac{21}{10}, which is the same as multiplying both sides by the reciprocal of the fraction.
P=\frac{m}{-\frac{21}{10}}
Dividing by -\frac{21}{10} undoes the multiplication by -\frac{21}{10}.
P=-\frac{10m}{21}
Divide m by -\frac{21}{10} by multiplying m by the reciprocal of -\frac{21}{10}.
m=-\frac{21}{10}P
Multiply -\frac{1}{2} and 4,2 to get -\frac{21}{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}