Solve for x
x=-\frac{3\left(2m-5\right)}{3-m}
m\neq 3
Solve for m
m=-\frac{3\left(5-x\right)}{x-6}
x\neq 6
Graph
Share
Copied to clipboard
m\left(x-6\right)=x-3+\left(x-6\right)\times 2
Variable x cannot be equal to 6 since division by zero is not defined. Multiply both sides of the equation by x-6.
mx-6m=x-3+\left(x-6\right)\times 2
Use the distributive property to multiply m by x-6.
mx-6m=x-3+2x-12
Use the distributive property to multiply x-6 by 2.
mx-6m=3x-3-12
Combine x and 2x to get 3x.
mx-6m=3x-15
Subtract 12 from -3 to get -15.
mx-6m-3x=-15
Subtract 3x from both sides.
mx-3x=-15+6m
Add 6m to both sides.
\left(m-3\right)x=-15+6m
Combine all terms containing x.
\left(m-3\right)x=6m-15
The equation is in standard form.
\frac{\left(m-3\right)x}{m-3}=\frac{6m-15}{m-3}
Divide both sides by m-3.
x=\frac{6m-15}{m-3}
Dividing by m-3 undoes the multiplication by m-3.
x=\frac{3\left(2m-5\right)}{m-3}
Divide 6m-15 by m-3.
x=\frac{3\left(2m-5\right)}{m-3}\text{, }x\neq 6
Variable x cannot be equal to 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}