Solve for n
n=-\frac{m+1}{m-1}
m\neq 1
Solve for m
m=-\frac{1-n}{n+1}
n\neq -1
Share
Copied to clipboard
m\left(n+1\right)=n-1
Variable n cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by n+1.
mn+m=n-1
Use the distributive property to multiply m by n+1.
mn+m-n=-1
Subtract n from both sides.
mn-n=-1-m
Subtract m from both sides.
\left(m-1\right)n=-1-m
Combine all terms containing n.
\left(m-1\right)n=-m-1
The equation is in standard form.
\frac{\left(m-1\right)n}{m-1}=\frac{-m-1}{m-1}
Divide both sides by m-1.
n=\frac{-m-1}{m-1}
Dividing by m-1 undoes the multiplication by m-1.
n=-\frac{m+1}{m-1}
Divide -1-m by m-1.
n=-\frac{m+1}{m-1}\text{, }n\neq -1
Variable n cannot be equal to -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}