Solve for T
\left\{\begin{matrix}T=\frac{m\Omega \sigma }{k_{B}}\text{, }&k_{B}\neq 0\text{ and }\sigma \neq 0\text{ and }\Omega \neq 0\\T\in \mathrm{R}\text{, }&m=0\text{ and }k_{B}=0\text{ and }\sigma \neq 0\text{ and }\Omega \neq 0\end{matrix}\right.
Solve for k_B
\left\{\begin{matrix}k_{B}=\frac{m\Omega \sigma }{T}\text{, }&T\neq 0\text{ and }\sigma \neq 0\text{ and }\Omega \neq 0\\k_{B}\in \mathrm{R}\text{, }&m=0\text{ and }T=0\text{ and }\sigma \neq 0\text{ and }\Omega \neq 0\end{matrix}\right.
Share
Copied to clipboard
m\Omega \sigma =k_{B}T
Multiply both sides of the equation by \Omega \sigma .
k_{B}T=m\Omega \sigma
Swap sides so that all variable terms are on the left hand side.
\frac{k_{B}T}{k_{B}}=\frac{m\Omega \sigma }{k_{B}}
Divide both sides by k_{B}.
T=\frac{m\Omega \sigma }{k_{B}}
Dividing by k_{B} undoes the multiplication by k_{B}.
m\Omega \sigma =k_{B}T
Multiply both sides of the equation by \Omega \sigma .
k_{B}T=m\Omega \sigma
Swap sides so that all variable terms are on the left hand side.
Tk_{B}=m\Omega \sigma
The equation is in standard form.
\frac{Tk_{B}}{T}=\frac{m\Omega \sigma }{T}
Divide both sides by T.
k_{B}=\frac{m\Omega \sigma }{T}
Dividing by T undoes the multiplication by T.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}