Skip to main content
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

m=\frac{1}{3}a+\frac{1}{3}b+\frac{1}{3}c
Divide each term of a+b+c by 3 to get \frac{1}{3}a+\frac{1}{3}b+\frac{1}{3}c.
\frac{1}{3}a+\frac{1}{3}b+\frac{1}{3}c=m
Swap sides so that all variable terms are on the left hand side.
\frac{1}{3}a+\frac{1}{3}c=m-\frac{1}{3}b
Subtract \frac{1}{3}b from both sides.
\frac{1}{3}a=m-\frac{1}{3}b-\frac{1}{3}c
Subtract \frac{1}{3}c from both sides.
\frac{1}{3}a=-\frac{b}{3}-\frac{c}{3}+m
The equation is in standard form.
\frac{\frac{1}{3}a}{\frac{1}{3}}=\frac{-\frac{b}{3}-\frac{c}{3}+m}{\frac{1}{3}}
Multiply both sides by 3.
a=\frac{-\frac{b}{3}-\frac{c}{3}+m}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
a=3m-b-c
Divide m-\frac{b}{3}-\frac{c}{3} by \frac{1}{3} by multiplying m-\frac{b}{3}-\frac{c}{3} by the reciprocal of \frac{1}{3}.
m=\frac{1}{3}a+\frac{1}{3}b+\frac{1}{3}c
Divide each term of a+b+c by 3 to get \frac{1}{3}a+\frac{1}{3}b+\frac{1}{3}c.
\frac{1}{3}a+\frac{1}{3}b+\frac{1}{3}c=m
Swap sides so that all variable terms are on the left hand side.
\frac{1}{3}b+\frac{1}{3}c=m-\frac{1}{3}a
Subtract \frac{1}{3}a from both sides.
\frac{1}{3}b=m-\frac{1}{3}a-\frac{1}{3}c
Subtract \frac{1}{3}c from both sides.
\frac{1}{3}b=-\frac{a}{3}-\frac{c}{3}+m
The equation is in standard form.
\frac{\frac{1}{3}b}{\frac{1}{3}}=\frac{-\frac{a}{3}-\frac{c}{3}+m}{\frac{1}{3}}
Multiply both sides by 3.
b=\frac{-\frac{a}{3}-\frac{c}{3}+m}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
b=3m-a-c
Divide m-\frac{a}{3}-\frac{c}{3} by \frac{1}{3} by multiplying m-\frac{a}{3}-\frac{c}{3} by the reciprocal of \frac{1}{3}.