Solve for n
n=2-\frac{10}{m}
m\neq 0
Solve for m
m=\frac{10}{2-n}
n\neq 2
Share
Copied to clipboard
m\left(-n+2\right)=8-\left(-2\right)
Variable n cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by -n+2.
-mn+2m=8-\left(-2\right)
Use the distributive property to multiply m by -n+2.
-mn+2m=8+2
The opposite of -2 is 2.
-mn+2m=10
Add 8 and 2 to get 10.
-mn=10-2m
Subtract 2m from both sides.
\left(-m\right)n=10-2m
The equation is in standard form.
\frac{\left(-m\right)n}{-m}=\frac{10-2m}{-m}
Divide both sides by -m.
n=\frac{10-2m}{-m}
Dividing by -m undoes the multiplication by -m.
n=2-\frac{10}{m}
Divide 10-2m by -m.
n=2-\frac{10}{m}\text{, }n\neq 2
Variable n cannot be equal to 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}