Solve for N
N=\frac{123\times \left(\frac{m}{s}\right)^{2}}{157k}
s\neq 0\text{ and }k\neq 0\text{ and }m\neq 0
Solve for k
k=\frac{123\times \left(\frac{m}{s}\right)^{2}}{157N}
s\neq 0\text{ and }N\neq 0\text{ and }m\neq 0
Share
Copied to clipboard
m=\frac{157kNs^{2}}{123m}
Divide 157kN by \frac{123m}{s^{2}} by multiplying 157kN by the reciprocal of \frac{123m}{s^{2}}.
\frac{157kNs^{2}}{123m}=m
Swap sides so that all variable terms are on the left hand side.
157kNs^{2}=m\times 123m
Multiply both sides of the equation by 123m.
157Nks^{2}=123mm
Reorder the terms.
157Nks^{2}=123m^{2}
Multiply m and m to get m^{2}.
157ks^{2}N=123m^{2}
The equation is in standard form.
\frac{157ks^{2}N}{157ks^{2}}=\frac{123m^{2}}{157ks^{2}}
Divide both sides by 157ks^{2}.
N=\frac{123m^{2}}{157ks^{2}}
Dividing by 157ks^{2} undoes the multiplication by 157ks^{2}.
m=\frac{157kNs^{2}}{123m}
Divide 157kN by \frac{123m}{s^{2}} by multiplying 157kN by the reciprocal of \frac{123m}{s^{2}}.
\frac{157kNs^{2}}{123m}=m
Swap sides so that all variable terms are on the left hand side.
157kNs^{2}=m\times 123m
Multiply both sides of the equation by 123m.
157Nks^{2}=123mm
Reorder the terms.
157Nks^{2}=123m^{2}
Multiply m and m to get m^{2}.
157Ns^{2}k=123m^{2}
The equation is in standard form.
\frac{157Ns^{2}k}{157Ns^{2}}=\frac{123m^{2}}{157Ns^{2}}
Divide both sides by 157Ns^{2}.
k=\frac{123m^{2}}{157Ns^{2}}
Dividing by 157Ns^{2} undoes the multiplication by 157Ns^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}