Skip to main content
Solve for m
Tick mark Image
Assign m
Tick mark Image

Similar Problems from Web Search

Share

m=\frac{6\sqrt{5}+\sqrt{20}-11\sqrt{5}}{\sqrt{5}-\sqrt{2}}
Factor 180=6^{2}\times 5. Rewrite the square root of the product \sqrt{6^{2}\times 5} as the product of square roots \sqrt{6^{2}}\sqrt{5}. Take the square root of 6^{2}.
m=\frac{6\sqrt{5}+2\sqrt{5}-11\sqrt{5}}{\sqrt{5}-\sqrt{2}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
m=\frac{8\sqrt{5}-11\sqrt{5}}{\sqrt{5}-\sqrt{2}}
Combine 6\sqrt{5} and 2\sqrt{5} to get 8\sqrt{5}.
m=\frac{-3\sqrt{5}}{\sqrt{5}-\sqrt{2}}
Combine 8\sqrt{5} and -11\sqrt{5} to get -3\sqrt{5}.
m=\frac{-3\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}
Rationalize the denominator of \frac{-3\sqrt{5}}{\sqrt{5}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{5}+\sqrt{2}.
m=\frac{-3\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
m=\frac{-3\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{5-2}
Square \sqrt{5}. Square \sqrt{2}.
m=\frac{-3\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{3}
Subtract 2 from 5 to get 3.
m=-\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)
Cancel out 3 and 3.
m=-\left(\sqrt{5}\right)^{2}-\sqrt{5}\sqrt{2}
Use the distributive property to multiply -\sqrt{5} by \sqrt{5}+\sqrt{2}.
m=-5-\sqrt{5}\sqrt{2}
The square of \sqrt{5} is 5.
m=-5-\sqrt{10}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.