Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{2\left(n-m\right)}{x^{2}}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&m=n\text{ and }x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{2\left(n-m\right)}{x^{2}}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&m=n\text{ and }x=0\end{matrix}\right.
Solve for m
m=-\frac{ax^{2}}{2}+n
Graph
Share
Copied to clipboard
n-\frac{ax^{2}}{2}=m
Swap sides so that all variable terms are on the left hand side.
-\frac{ax^{2}}{2}=m-n
Subtract n from both sides.
-ax^{2}=2m-2n
Multiply both sides of the equation by 2.
-ax^{2}=-2n+2m
Reorder the terms.
\left(-x^{2}\right)a=2m-2n
The equation is in standard form.
\frac{\left(-x^{2}\right)a}{-x^{2}}=\frac{2m-2n}{-x^{2}}
Divide both sides by -x^{2}.
a=\frac{2m-2n}{-x^{2}}
Dividing by -x^{2} undoes the multiplication by -x^{2}.
a=-\frac{2\left(m-n\right)}{x^{2}}
Divide -2n+2m by -x^{2}.
n-\frac{ax^{2}}{2}=m
Swap sides so that all variable terms are on the left hand side.
-\frac{ax^{2}}{2}=m-n
Subtract n from both sides.
-ax^{2}=2m-2n
Multiply both sides of the equation by 2.
-ax^{2}=-2n+2m
Reorder the terms.
\left(-x^{2}\right)a=2m-2n
The equation is in standard form.
\frac{\left(-x^{2}\right)a}{-x^{2}}=\frac{2m-2n}{-x^{2}}
Divide both sides by -x^{2}.
a=\frac{2m-2n}{-x^{2}}
Dividing by -x^{2} undoes the multiplication by -x^{2}.
a=-\frac{2\left(m-n\right)}{x^{2}}
Divide -2n+2m by -x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}