Evaluate
j^{2}+2j-\frac{1}{4}
Expand
j^{2}+2j-\frac{1}{4}
Share
Copied to clipboard
j^{2}+j-\left(-j-\frac{1}{2}\right)-\frac{3}{4}
Use the distributive property to multiply j by j+1.
j^{2}+j-\left(-j\right)-\left(-\frac{1}{2}\right)-\frac{3}{4}
To find the opposite of -j-\frac{1}{2}, find the opposite of each term.
j^{2}+j-\left(-j\right)+\frac{1}{2}-\frac{3}{4}
The opposite of -\frac{1}{2} is \frac{1}{2}.
j^{2}+j-\left(-j\right)+\frac{2}{4}-\frac{3}{4}
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{3}{4} to fractions with denominator 4.
j^{2}+j-\left(-j\right)+\frac{2-3}{4}
Since \frac{2}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
j^{2}+j-\left(-j\right)-\frac{1}{4}
Subtract 3 from 2 to get -1.
j^{2}+j+j-\frac{1}{4}
Multiply -1 and -1 to get 1.
j^{2}+2j-\frac{1}{4}
Combine j and j to get 2j.
j^{2}+j-\left(-j-\frac{1}{2}\right)-\frac{3}{4}
Use the distributive property to multiply j by j+1.
j^{2}+j-\left(-j\right)-\left(-\frac{1}{2}\right)-\frac{3}{4}
To find the opposite of -j-\frac{1}{2}, find the opposite of each term.
j^{2}+j-\left(-j\right)+\frac{1}{2}-\frac{3}{4}
The opposite of -\frac{1}{2} is \frac{1}{2}.
j^{2}+j-\left(-j\right)+\frac{2}{4}-\frac{3}{4}
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{3}{4} to fractions with denominator 4.
j^{2}+j-\left(-j\right)+\frac{2-3}{4}
Since \frac{2}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
j^{2}+j-\left(-j\right)-\frac{1}{4}
Subtract 3 from 2 to get -1.
j^{2}+j+j-\frac{1}{4}
Multiply -1 and -1 to get 1.
j^{2}+2j-\frac{1}{4}
Combine j and j to get 2j.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}