Solve for l
l=\frac{1}{4}=0.25
l=\frac{3}{4}=0.75
Share
Copied to clipboard
l-l^{2}=\frac{3}{16}
Subtract l^{2} from both sides.
l-l^{2}-\frac{3}{16}=0
Subtract \frac{3}{16} from both sides.
-l^{2}+l-\frac{3}{16}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
l=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\left(-\frac{3}{16}\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 1 for b, and -\frac{3}{16} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
l=\frac{-1±\sqrt{1-4\left(-1\right)\left(-\frac{3}{16}\right)}}{2\left(-1\right)}
Square 1.
l=\frac{-1±\sqrt{1+4\left(-\frac{3}{16}\right)}}{2\left(-1\right)}
Multiply -4 times -1.
l=\frac{-1±\sqrt{1-\frac{3}{4}}}{2\left(-1\right)}
Multiply 4 times -\frac{3}{16}.
l=\frac{-1±\sqrt{\frac{1}{4}}}{2\left(-1\right)}
Add 1 to -\frac{3}{4}.
l=\frac{-1±\frac{1}{2}}{2\left(-1\right)}
Take the square root of \frac{1}{4}.
l=\frac{-1±\frac{1}{2}}{-2}
Multiply 2 times -1.
l=-\frac{\frac{1}{2}}{-2}
Now solve the equation l=\frac{-1±\frac{1}{2}}{-2} when ± is plus. Add -1 to \frac{1}{2}.
l=\frac{1}{4}
Divide -\frac{1}{2} by -2.
l=-\frac{\frac{3}{2}}{-2}
Now solve the equation l=\frac{-1±\frac{1}{2}}{-2} when ± is minus. Subtract \frac{1}{2} from -1.
l=\frac{3}{4}
Divide -\frac{3}{2} by -2.
l=\frac{1}{4} l=\frac{3}{4}
The equation is now solved.
l-l^{2}=\frac{3}{16}
Subtract l^{2} from both sides.
-l^{2}+l=\frac{3}{16}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-l^{2}+l}{-1}=\frac{\frac{3}{16}}{-1}
Divide both sides by -1.
l^{2}+\frac{1}{-1}l=\frac{\frac{3}{16}}{-1}
Dividing by -1 undoes the multiplication by -1.
l^{2}-l=\frac{\frac{3}{16}}{-1}
Divide 1 by -1.
l^{2}-l=-\frac{3}{16}
Divide \frac{3}{16} by -1.
l^{2}-l+\left(-\frac{1}{2}\right)^{2}=-\frac{3}{16}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
l^{2}-l+\frac{1}{4}=-\frac{3}{16}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
l^{2}-l+\frac{1}{4}=\frac{1}{16}
Add -\frac{3}{16} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(l-\frac{1}{2}\right)^{2}=\frac{1}{16}
Factor l^{2}-l+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(l-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
l-\frac{1}{2}=\frac{1}{4} l-\frac{1}{2}=-\frac{1}{4}
Simplify.
l=\frac{3}{4} l=\frac{1}{4}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}