Solve for k
\left\{\begin{matrix}k=-\frac{\left(-2-i\right)m^{2}+\left(3+3i\right)m+\left(2-2i\right)}{z}\text{, }&z\neq 0\\k\in \mathrm{C}\text{, }&\left(m=2\text{ or }m=-\frac{1}{5}+\frac{3}{5}i\right)\text{ and }z=0\end{matrix}\right.
Solve for m
m=\left(\frac{1}{5}-\frac{1}{10}i\right)\sqrt{\left(8+4i\right)kz+\left(24+10i\right)}+\left(\frac{9}{10}+\frac{3}{10}i\right)
m=\left(-\frac{1}{5}+\frac{1}{10}i\right)\sqrt{\left(8+4i\right)kz+\left(24+10i\right)}+\left(\frac{9}{10}+\frac{3}{10}i\right)
Share
Copied to clipboard
kz=\left(2+i\right)m^{2}-3\left(i+1\right)m-\left(2-2i\right)
Multiply 2 and 1-i to get 2-2i.
kz=\left(2+i\right)m^{2}+\left(-3i-3\right)m-\left(2-2i\right)
Use the distributive property to multiply -3 by i+1.
kz=\left(2+i\right)m^{2}+\left(-3-3i\right)m-\left(2-2i\right)
Use the distributive property to multiply -3i-3 by m.
kz=\left(2+i\right)m^{2}+\left(-3-3i\right)m+\left(-2+2i\right)
Multiply -1 and 2-2i to get -2+2i.
zk=\left(2+i\right)m^{2}+\left(-3-3i\right)m+\left(-2+2i\right)
The equation is in standard form.
\frac{zk}{z}=\frac{\left(2+i\right)m^{2}+\left(-3-3i\right)m+\left(-2+2i\right)}{z}
Divide both sides by z.
k=\frac{\left(2+i\right)m^{2}+\left(-3-3i\right)m+\left(-2+2i\right)}{z}
Dividing by z undoes the multiplication by z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}