Solve for k (complex solution)
\left\{\begin{matrix}k=\frac{1}{x-1}\text{, }&x\neq 1\\k\in \mathrm{C}\text{, }&x=1\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\frac{1}{x-1}\text{, }&x\neq 1\\k\in \mathrm{R}\text{, }&x=1\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=1\text{, }&\text{unconditionally}\\x=1+\frac{1}{k}\text{, }&k\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
kx^{2}-\left(2kx+x\right)+k+1=0
Use the distributive property to multiply 2k+1 by x.
kx^{2}-2kx-x+k+1=0
To find the opposite of 2kx+x, find the opposite of each term.
kx^{2}-2kx+k+1=x
Add x to both sides. Anything plus zero gives itself.
kx^{2}-2kx+k=x-1
Subtract 1 from both sides.
\left(x^{2}-2x+1\right)k=x-1
Combine all terms containing k.
\frac{\left(x^{2}-2x+1\right)k}{x^{2}-2x+1}=\frac{x-1}{x^{2}-2x+1}
Divide both sides by x^{2}-2x+1.
k=\frac{x-1}{x^{2}-2x+1}
Dividing by x^{2}-2x+1 undoes the multiplication by x^{2}-2x+1.
k=\frac{1}{x-1}
Divide -1+x by x^{2}-2x+1.
kx^{2}-\left(2kx+x\right)+k+1=0
Use the distributive property to multiply 2k+1 by x.
kx^{2}-2kx-x+k+1=0
To find the opposite of 2kx+x, find the opposite of each term.
kx^{2}-2kx+k+1=x
Add x to both sides. Anything plus zero gives itself.
kx^{2}-2kx+k=x-1
Subtract 1 from both sides.
\left(x^{2}-2x+1\right)k=x-1
Combine all terms containing k.
\frac{\left(x^{2}-2x+1\right)k}{x^{2}-2x+1}=\frac{x-1}{x^{2}-2x+1}
Divide both sides by x^{2}-2x+1.
k=\frac{x-1}{x^{2}-2x+1}
Dividing by x^{2}-2x+1 undoes the multiplication by x^{2}-2x+1.
k=\frac{1}{x-1}
Divide -1+x by x^{2}-2x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}