Solve for k
k=-\frac{x+5}{x\left(x+3\right)}
x\neq -3\text{ and }x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{9k^{2}-14k+1}-3k-1}{2k}\text{; }x=-\frac{\sqrt{9k^{2}-14k+1}+3k+1}{2k}\text{, }&k\neq 0\\x=-5\text{, }&k=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{9k^{2}-14k+1}-3k-1}{2k}\text{; }x=-\frac{\sqrt{9k^{2}-14k+1}+3k+1}{2k}\text{, }&\left(k\neq 0\text{ and }k\leq \frac{7-2\sqrt{10}}{9}\right)\text{ or }k\geq \frac{2\sqrt{10}+7}{9}\\x=-5\text{, }&k=0\end{matrix}\right.
Graph
Share
Copied to clipboard
kx^{2}+3kx+5=-x
Subtract x from both sides. Anything subtracted from zero gives its negation.
kx^{2}+3kx=-x-5
Subtract 5 from both sides.
\left(x^{2}+3x\right)k=-x-5
Combine all terms containing k.
\frac{\left(x^{2}+3x\right)k}{x^{2}+3x}=\frac{-x-5}{x^{2}+3x}
Divide both sides by x^{2}+3x.
k=\frac{-x-5}{x^{2}+3x}
Dividing by x^{2}+3x undoes the multiplication by x^{2}+3x.
k=-\frac{x+5}{x\left(x+3\right)}
Divide -x-5 by x^{2}+3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}