Solve for L
L=\frac{4\sqrt{2}}{k}
k\neq 0
Solve for k
k=\frac{4\sqrt{2}}{L}
L\neq 0
Share
Copied to clipboard
kL=\sqrt{\left(-4\right)^{2}+\left(-2-2\right)^{2}+\left(0-0\right)^{2}}
Subtract 2 from -2 to get -4.
kL=\sqrt{16+\left(-2-2\right)^{2}+\left(0-0\right)^{2}}
Calculate -4 to the power of 2 and get 16.
kL=\sqrt{16+\left(-4\right)^{2}+\left(0-0\right)^{2}}
Subtract 2 from -2 to get -4.
kL=\sqrt{16+16+\left(0-0\right)^{2}}
Calculate -4 to the power of 2 and get 16.
kL=\sqrt{32+\left(0-0\right)^{2}}
Add 16 and 16 to get 32.
kL=\sqrt{32+0^{2}}
Subtracting 0 from itself leaves 0.
kL=\sqrt{32+0}
Calculate 0 to the power of 2 and get 0.
kL=\sqrt{32}
Add 32 and 0 to get 32.
kL=4\sqrt{2}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
\frac{kL}{k}=\frac{4\sqrt{2}}{k}
Divide both sides by k.
L=\frac{4\sqrt{2}}{k}
Dividing by k undoes the multiplication by k.
kL=\sqrt{\left(-4\right)^{2}+\left(-2-2\right)^{2}+\left(0-0\right)^{2}}
Subtract 2 from -2 to get -4.
kL=\sqrt{16+\left(-2-2\right)^{2}+\left(0-0\right)^{2}}
Calculate -4 to the power of 2 and get 16.
kL=\sqrt{16+\left(-4\right)^{2}+\left(0-0\right)^{2}}
Subtract 2 from -2 to get -4.
kL=\sqrt{16+16+\left(0-0\right)^{2}}
Calculate -4 to the power of 2 and get 16.
kL=\sqrt{32+\left(0-0\right)^{2}}
Add 16 and 16 to get 32.
kL=\sqrt{32+0^{2}}
Subtracting 0 from itself leaves 0.
kL=\sqrt{32+0}
Calculate 0 to the power of 2 and get 0.
kL=\sqrt{32}
Add 32 and 0 to get 32.
kL=4\sqrt{2}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
Lk=4\sqrt{2}
The equation is in standard form.
\frac{Lk}{L}=\frac{4\sqrt{2}}{L}
Divide both sides by L.
k=\frac{4\sqrt{2}}{L}
Dividing by L undoes the multiplication by L.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}