Evaluate
\frac{k\left(k+1\right)\left(6k^{2}+14k+7\right)}{6}
Expand
k^{4}+\frac{10k^{3}}{3}+\frac{7k^{2}}{2}+\frac{7k}{6}
Share
Copied to clipboard
\frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6}\left(k+1\right)
Express k\times \frac{2k+1+6\left(k+1\right)^{2}}{6} as a single fraction.
\frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6}k+\frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6}
Use the distributive property to multiply \frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6} by k+1.
\frac{2k^{2}+k+6k\left(k+1\right)^{2}}{6}k+\frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6}
Use the distributive property to multiply k by 2k+1+6\left(k+1\right)^{2}.
\frac{\left(2k^{2}+k+6k\left(k+1\right)^{2}\right)k}{6}+\frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6}
Express \frac{2k^{2}+k+6k\left(k+1\right)^{2}}{6}k as a single fraction.
\frac{\left(2k^{2}+k+6k\left(k+1\right)^{2}\right)k}{6}+\frac{2k^{2}+k+6k\left(k+1\right)^{2}}{6}
Use the distributive property to multiply k by 2k+1+6\left(k+1\right)^{2}.
\frac{\left(2k^{2}+k+6k\left(k+1\right)^{2}\right)k+2k^{2}+k+6k\left(k+1\right)^{2}}{6}
Since \frac{\left(2k^{2}+k+6k\left(k+1\right)^{2}\right)k}{6} and \frac{2k^{2}+k+6k\left(k+1\right)^{2}}{6} have the same denominator, add them by adding their numerators.
\frac{2k^{3}+k^{2}+6k^{4}+12k^{3}+6k^{2}+2k^{2}+k+6k^{3}+12k^{2}+6k}{6}
Do the multiplications in \left(2k^{2}+k+6k\left(k+1\right)^{2}\right)k+2k^{2}+k+6k\left(k+1\right)^{2}.
\frac{20k^{3}+21k^{2}+6k^{4}+7k}{6}
Combine like terms in 2k^{3}+k^{2}+6k^{4}+12k^{3}+6k^{2}+2k^{2}+k+6k^{3}+12k^{2}+6k.
\frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6}\left(k+1\right)
Express k\times \frac{2k+1+6\left(k+1\right)^{2}}{6} as a single fraction.
\frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6}k+\frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6}
Use the distributive property to multiply \frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6} by k+1.
\frac{2k^{2}+k+6k\left(k+1\right)^{2}}{6}k+\frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6}
Use the distributive property to multiply k by 2k+1+6\left(k+1\right)^{2}.
\frac{\left(2k^{2}+k+6k\left(k+1\right)^{2}\right)k}{6}+\frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6}
Express \frac{2k^{2}+k+6k\left(k+1\right)^{2}}{6}k as a single fraction.
\frac{\left(2k^{2}+k+6k\left(k+1\right)^{2}\right)k}{6}+\frac{2k^{2}+k+6k\left(k+1\right)^{2}}{6}
Use the distributive property to multiply k by 2k+1+6\left(k+1\right)^{2}.
\frac{\left(2k^{2}+k+6k\left(k+1\right)^{2}\right)k+2k^{2}+k+6k\left(k+1\right)^{2}}{6}
Since \frac{\left(2k^{2}+k+6k\left(k+1\right)^{2}\right)k}{6} and \frac{2k^{2}+k+6k\left(k+1\right)^{2}}{6} have the same denominator, add them by adding their numerators.
\frac{2k^{3}+k^{2}+6k^{4}+12k^{3}+6k^{2}+2k^{2}+k+6k^{3}+12k^{2}+6k}{6}
Do the multiplications in \left(2k^{2}+k+6k\left(k+1\right)^{2}\right)k+2k^{2}+k+6k\left(k+1\right)^{2}.
\frac{20k^{3}+21k^{2}+6k^{4}+7k}{6}
Combine like terms in 2k^{3}+k^{2}+6k^{4}+12k^{3}+6k^{2}+2k^{2}+k+6k^{3}+12k^{2}+6k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}