Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6}\left(k+1\right)
Express k\times \frac{2k+1+6\left(k+1\right)^{2}}{6} as a single fraction.
\frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6}k+\frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6}
Use the distributive property to multiply \frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6} by k+1.
\frac{2k^{2}+k+6k\left(k+1\right)^{2}}{6}k+\frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6}
Use the distributive property to multiply k by 2k+1+6\left(k+1\right)^{2}.
\frac{\left(2k^{2}+k+6k\left(k+1\right)^{2}\right)k}{6}+\frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6}
Express \frac{2k^{2}+k+6k\left(k+1\right)^{2}}{6}k as a single fraction.
\frac{\left(2k^{2}+k+6k\left(k+1\right)^{2}\right)k}{6}+\frac{2k^{2}+k+6k\left(k+1\right)^{2}}{6}
Use the distributive property to multiply k by 2k+1+6\left(k+1\right)^{2}.
\frac{\left(2k^{2}+k+6k\left(k+1\right)^{2}\right)k+2k^{2}+k+6k\left(k+1\right)^{2}}{6}
Since \frac{\left(2k^{2}+k+6k\left(k+1\right)^{2}\right)k}{6} and \frac{2k^{2}+k+6k\left(k+1\right)^{2}}{6} have the same denominator, add them by adding their numerators.
\frac{2k^{3}+k^{2}+6k^{4}+12k^{3}+6k^{2}+2k^{2}+k+6k^{3}+12k^{2}+6k}{6}
Do the multiplications in \left(2k^{2}+k+6k\left(k+1\right)^{2}\right)k+2k^{2}+k+6k\left(k+1\right)^{2}.
\frac{20k^{3}+21k^{2}+6k^{4}+7k}{6}
Combine like terms in 2k^{3}+k^{2}+6k^{4}+12k^{3}+6k^{2}+2k^{2}+k+6k^{3}+12k^{2}+6k.
\frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6}\left(k+1\right)
Express k\times \frac{2k+1+6\left(k+1\right)^{2}}{6} as a single fraction.
\frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6}k+\frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6}
Use the distributive property to multiply \frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6} by k+1.
\frac{2k^{2}+k+6k\left(k+1\right)^{2}}{6}k+\frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6}
Use the distributive property to multiply k by 2k+1+6\left(k+1\right)^{2}.
\frac{\left(2k^{2}+k+6k\left(k+1\right)^{2}\right)k}{6}+\frac{k\left(2k+1+6\left(k+1\right)^{2}\right)}{6}
Express \frac{2k^{2}+k+6k\left(k+1\right)^{2}}{6}k as a single fraction.
\frac{\left(2k^{2}+k+6k\left(k+1\right)^{2}\right)k}{6}+\frac{2k^{2}+k+6k\left(k+1\right)^{2}}{6}
Use the distributive property to multiply k by 2k+1+6\left(k+1\right)^{2}.
\frac{\left(2k^{2}+k+6k\left(k+1\right)^{2}\right)k+2k^{2}+k+6k\left(k+1\right)^{2}}{6}
Since \frac{\left(2k^{2}+k+6k\left(k+1\right)^{2}\right)k}{6} and \frac{2k^{2}+k+6k\left(k+1\right)^{2}}{6} have the same denominator, add them by adding their numerators.
\frac{2k^{3}+k^{2}+6k^{4}+12k^{3}+6k^{2}+2k^{2}+k+6k^{3}+12k^{2}+6k}{6}
Do the multiplications in \left(2k^{2}+k+6k\left(k+1\right)^{2}\right)k+2k^{2}+k+6k\left(k+1\right)^{2}.
\frac{20k^{3}+21k^{2}+6k^{4}+7k}{6}
Combine like terms in 2k^{3}+k^{2}+6k^{4}+12k^{3}+6k^{2}+2k^{2}+k+6k^{3}+12k^{2}+6k.