Evaluate
13k
Differentiate w.r.t. k
13
Share
Copied to clipboard
\left(4k+k\sqrt{3}\right)\left(4-\sqrt{3}\right)
Use the distributive property to multiply k by 4+\sqrt{3}.
16k-4\sqrt{3}k+4k\sqrt{3}-k\left(\sqrt{3}\right)^{2}
Apply the distributive property by multiplying each term of 4k+k\sqrt{3} by each term of 4-\sqrt{3}.
16k-k\left(\sqrt{3}\right)^{2}
Combine -4\sqrt{3}k and 4k\sqrt{3} to get 0.
16k-k\times 3
The square of \sqrt{3} is 3.
16k-3k
Multiply -1 and 3 to get -3.
13k
Combine 16k and -3k to get 13k.
\frac{\mathrm{d}}{\mathrm{d}k}(\left(4k+k\sqrt{3}\right)\left(4-\sqrt{3}\right))
Use the distributive property to multiply k by 4+\sqrt{3}.
\frac{\mathrm{d}}{\mathrm{d}k}(16k-4\sqrt{3}k+4k\sqrt{3}-k\left(\sqrt{3}\right)^{2})
Apply the distributive property by multiplying each term of 4k+k\sqrt{3} by each term of 4-\sqrt{3}.
\frac{\mathrm{d}}{\mathrm{d}k}(16k-k\left(\sqrt{3}\right)^{2})
Combine -4\sqrt{3}k and 4k\sqrt{3} to get 0.
\frac{\mathrm{d}}{\mathrm{d}k}(16k-k\times 3)
The square of \sqrt{3} is 3.
\frac{\mathrm{d}}{\mathrm{d}k}(16k-3k)
Multiply -1 and 3 to get -3.
\frac{\mathrm{d}}{\mathrm{d}k}(13k)
Combine 16k and -3k to get 13k.
13k^{1-1}
The derivative of ax^{n} is nax^{n-1}.
13k^{0}
Subtract 1 from 1.
13\times 1
For any term t except 0, t^{0}=1.
13
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}