Solve for k
k=-3
k=\frac{1}{2}=0.5
Share
Copied to clipboard
2k^{2}+5k-3=0
Use the distributive property to multiply k by 2k+5.
a+b=5 ab=2\left(-3\right)=-6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2k^{2}+ak+bk-3. To find a and b, set up a system to be solved.
-1,6 -2,3
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -6.
-1+6=5 -2+3=1
Calculate the sum for each pair.
a=-1 b=6
The solution is the pair that gives sum 5.
\left(2k^{2}-k\right)+\left(6k-3\right)
Rewrite 2k^{2}+5k-3 as \left(2k^{2}-k\right)+\left(6k-3\right).
k\left(2k-1\right)+3\left(2k-1\right)
Factor out k in the first and 3 in the second group.
\left(2k-1\right)\left(k+3\right)
Factor out common term 2k-1 by using distributive property.
k=\frac{1}{2} k=-3
To find equation solutions, solve 2k-1=0 and k+3=0.
2k^{2}+5k-3=0
Use the distributive property to multiply k by 2k+5.
k=\frac{-5±\sqrt{5^{2}-4\times 2\left(-3\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 5 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-5±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
Square 5.
k=\frac{-5±\sqrt{25-8\left(-3\right)}}{2\times 2}
Multiply -4 times 2.
k=\frac{-5±\sqrt{25+24}}{2\times 2}
Multiply -8 times -3.
k=\frac{-5±\sqrt{49}}{2\times 2}
Add 25 to 24.
k=\frac{-5±7}{2\times 2}
Take the square root of 49.
k=\frac{-5±7}{4}
Multiply 2 times 2.
k=\frac{2}{4}
Now solve the equation k=\frac{-5±7}{4} when ± is plus. Add -5 to 7.
k=\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
k=-\frac{12}{4}
Now solve the equation k=\frac{-5±7}{4} when ± is minus. Subtract 7 from -5.
k=-3
Divide -12 by 4.
k=\frac{1}{2} k=-3
The equation is now solved.
2k^{2}+5k-3=0
Use the distributive property to multiply k by 2k+5.
2k^{2}+5k=3
Add 3 to both sides. Anything plus zero gives itself.
\frac{2k^{2}+5k}{2}=\frac{3}{2}
Divide both sides by 2.
k^{2}+\frac{5}{2}k=\frac{3}{2}
Dividing by 2 undoes the multiplication by 2.
k^{2}+\frac{5}{2}k+\left(\frac{5}{4}\right)^{2}=\frac{3}{2}+\left(\frac{5}{4}\right)^{2}
Divide \frac{5}{2}, the coefficient of the x term, by 2 to get \frac{5}{4}. Then add the square of \frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+\frac{5}{2}k+\frac{25}{16}=\frac{3}{2}+\frac{25}{16}
Square \frac{5}{4} by squaring both the numerator and the denominator of the fraction.
k^{2}+\frac{5}{2}k+\frac{25}{16}=\frac{49}{16}
Add \frac{3}{2} to \frac{25}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(k+\frac{5}{4}\right)^{2}=\frac{49}{16}
Factor k^{2}+\frac{5}{2}k+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+\frac{5}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Take the square root of both sides of the equation.
k+\frac{5}{4}=\frac{7}{4} k+\frac{5}{4}=-\frac{7}{4}
Simplify.
k=\frac{1}{2} k=-3
Subtract \frac{5}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}