Evaluate
-\frac{8k}{4k^{2}+1}
Expand
-\frac{8k}{4k^{2}+1}
Share
Copied to clipboard
k\left(\frac{-4+16k^{2}}{1+4k^{2}}-\frac{4\left(1+4k^{2}\right)}{1+4k^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{1+4k^{2}}{1+4k^{2}}.
k\times \frac{-4+16k^{2}-4\left(1+4k^{2}\right)}{1+4k^{2}}
Since \frac{-4+16k^{2}}{1+4k^{2}} and \frac{4\left(1+4k^{2}\right)}{1+4k^{2}} have the same denominator, subtract them by subtracting their numerators.
k\times \frac{-4+16k^{2}-4-16k^{2}}{1+4k^{2}}
Do the multiplications in -4+16k^{2}-4\left(1+4k^{2}\right).
k\times \frac{-8}{1+4k^{2}}
Combine like terms in -4+16k^{2}-4-16k^{2}.
\frac{k\left(-8\right)}{1+4k^{2}}
Express k\times \frac{-8}{1+4k^{2}} as a single fraction.
k\left(\frac{-4+16k^{2}}{1+4k^{2}}-\frac{4\left(1+4k^{2}\right)}{1+4k^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{1+4k^{2}}{1+4k^{2}}.
k\times \frac{-4+16k^{2}-4\left(1+4k^{2}\right)}{1+4k^{2}}
Since \frac{-4+16k^{2}}{1+4k^{2}} and \frac{4\left(1+4k^{2}\right)}{1+4k^{2}} have the same denominator, subtract them by subtracting their numerators.
k\times \frac{-4+16k^{2}-4-16k^{2}}{1+4k^{2}}
Do the multiplications in -4+16k^{2}-4\left(1+4k^{2}\right).
k\times \frac{-8}{1+4k^{2}}
Combine like terms in -4+16k^{2}-4-16k^{2}.
\frac{k\left(-8\right)}{1+4k^{2}}
Express k\times \frac{-8}{1+4k^{2}} as a single fraction.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}