Solve for k
k=1
Share
Copied to clipboard
k\times 2\sqrt{7}-\sqrt{63}+\sqrt{7}=0
Factor 28=2^{2}\times 7. Rewrite the square root of the product \sqrt{2^{2}\times 7} as the product of square roots \sqrt{2^{2}}\sqrt{7}. Take the square root of 2^{2}.
k\times 2\sqrt{7}-3\sqrt{7}+\sqrt{7}=0
Factor 63=3^{2}\times 7. Rewrite the square root of the product \sqrt{3^{2}\times 7} as the product of square roots \sqrt{3^{2}}\sqrt{7}. Take the square root of 3^{2}.
k\times 2\sqrt{7}-2\sqrt{7}=0
Combine -3\sqrt{7} and \sqrt{7} to get -2\sqrt{7}.
k\times 2\sqrt{7}=2\sqrt{7}
Add 2\sqrt{7} to both sides. Anything plus zero gives itself.
k\sqrt{7}=\sqrt{7}
Cancel out 2 on both sides.
\sqrt{7}k=\sqrt{7}
The equation is in standard form.
\frac{\sqrt{7}k}{\sqrt{7}}=\frac{\sqrt{7}}{\sqrt{7}}
Divide both sides by \sqrt{7}.
k=\frac{\sqrt{7}}{\sqrt{7}}
Dividing by \sqrt{7} undoes the multiplication by \sqrt{7}.
k=1
Divide \sqrt{7} by \sqrt{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}