Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

factor(k^{2}-144k-10)
Multiply 2 and 72 to get 144.
k^{2}-144k-10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
k=\frac{-\left(-144\right)±\sqrt{\left(-144\right)^{2}-4\left(-10\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-\left(-144\right)±\sqrt{20736-4\left(-10\right)}}{2}
Square -144.
k=\frac{-\left(-144\right)±\sqrt{20736+40}}{2}
Multiply -4 times -10.
k=\frac{-\left(-144\right)±\sqrt{20776}}{2}
Add 20736 to 40.
k=\frac{-\left(-144\right)±14\sqrt{106}}{2}
Take the square root of 20776.
k=\frac{144±14\sqrt{106}}{2}
The opposite of -144 is 144.
k=\frac{14\sqrt{106}+144}{2}
Now solve the equation k=\frac{144±14\sqrt{106}}{2} when ± is plus. Add 144 to 14\sqrt{106}.
k=7\sqrt{106}+72
Divide 144+14\sqrt{106} by 2.
k=\frac{144-14\sqrt{106}}{2}
Now solve the equation k=\frac{144±14\sqrt{106}}{2} when ± is minus. Subtract 14\sqrt{106} from 144.
k=72-7\sqrt{106}
Divide 144-14\sqrt{106} by 2.
k^{2}-144k-10=\left(k-\left(7\sqrt{106}+72\right)\right)\left(k-\left(72-7\sqrt{106}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 72+7\sqrt{106} for x_{1} and 72-7\sqrt{106} for x_{2}.
k^{2}-144k-10
Multiply 2 and 72 to get 144.