Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

k^{2}-10k+9=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
k=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 1\times 9}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -10 for b, and 9 for c in the quadratic formula.
k=\frac{10±8}{2}
Do the calculations.
k=9 k=1
Solve the equation k=\frac{10±8}{2} when ± is plus and when ± is minus.
\left(k-9\right)\left(k-1\right)>0
Rewrite the inequality by using the obtained solutions.
k-9<0 k-1<0
For the product to be positive, k-9 and k-1 have to be both negative or both positive. Consider the case when k-9 and k-1 are both negative.
k<1
The solution satisfying both inequalities is k<1.
k-1>0 k-9>0
Consider the case when k-9 and k-1 are both positive.
k>9
The solution satisfying both inequalities is k>9.
k<1\text{; }k>9
The final solution is the union of the obtained solutions.