Solve for k
k=\sqrt{10}\approx 3.16227766
k=-\sqrt{10}\approx -3.16227766
Share
Copied to clipboard
k^{2}\times 4=40
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of 4 is 4.
k^{2}=\frac{40}{4}
Divide both sides by 4.
k^{2}=10
Divide 40 by 4 to get 10.
k=\sqrt{10} k=-\sqrt{10}
Take the square root of both sides of the equation.
k^{2}\times 4=40
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of 4 is 4.
k^{2}\times 4-40=0
Subtract 40 from both sides.
4k^{2}-40=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
k=\frac{0±\sqrt{0^{2}-4\times 4\left(-40\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and -40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{0±\sqrt{-4\times 4\left(-40\right)}}{2\times 4}
Square 0.
k=\frac{0±\sqrt{-16\left(-40\right)}}{2\times 4}
Multiply -4 times 4.
k=\frac{0±\sqrt{640}}{2\times 4}
Multiply -16 times -40.
k=\frac{0±8\sqrt{10}}{2\times 4}
Take the square root of 640.
k=\frac{0±8\sqrt{10}}{8}
Multiply 2 times 4.
k=\sqrt{10}
Now solve the equation k=\frac{0±8\sqrt{10}}{8} when ± is plus.
k=-\sqrt{10}
Now solve the equation k=\frac{0±8\sqrt{10}}{8} when ± is minus.
k=\sqrt{10} k=-\sqrt{10}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}