Solve for k (complex solution)
k=\sqrt{131}-7\approx 4.445523142
k=-\left(\sqrt{131}+7\right)\approx -18.445523142
Solve for k
k=\sqrt{131}-7\approx 4.445523142
k=-\sqrt{131}-7\approx -18.445523142
Share
Copied to clipboard
k^{2}+14k-79=3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k^{2}+14k-79-3=3-3
Subtract 3 from both sides of the equation.
k^{2}+14k-79-3=0
Subtracting 3 from itself leaves 0.
k^{2}+14k-82=0
Subtract 3 from -79.
k=\frac{-14±\sqrt{14^{2}-4\left(-82\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 14 for b, and -82 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-14±\sqrt{196-4\left(-82\right)}}{2}
Square 14.
k=\frac{-14±\sqrt{196+328}}{2}
Multiply -4 times -82.
k=\frac{-14±\sqrt{524}}{2}
Add 196 to 328.
k=\frac{-14±2\sqrt{131}}{2}
Take the square root of 524.
k=\frac{2\sqrt{131}-14}{2}
Now solve the equation k=\frac{-14±2\sqrt{131}}{2} when ± is plus. Add -14 to 2\sqrt{131}.
k=\sqrt{131}-7
Divide -14+2\sqrt{131} by 2.
k=\frac{-2\sqrt{131}-14}{2}
Now solve the equation k=\frac{-14±2\sqrt{131}}{2} when ± is minus. Subtract 2\sqrt{131} from -14.
k=-\sqrt{131}-7
Divide -14-2\sqrt{131} by 2.
k=\sqrt{131}-7 k=-\sqrt{131}-7
The equation is now solved.
k^{2}+14k-79=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
k^{2}+14k-79-\left(-79\right)=3-\left(-79\right)
Add 79 to both sides of the equation.
k^{2}+14k=3-\left(-79\right)
Subtracting -79 from itself leaves 0.
k^{2}+14k=82
Subtract -79 from 3.
k^{2}+14k+7^{2}=82+7^{2}
Divide 14, the coefficient of the x term, by 2 to get 7. Then add the square of 7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+14k+49=82+49
Square 7.
k^{2}+14k+49=131
Add 82 to 49.
\left(k+7\right)^{2}=131
Factor k^{2}+14k+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+7\right)^{2}}=\sqrt{131}
Take the square root of both sides of the equation.
k+7=\sqrt{131} k+7=-\sqrt{131}
Simplify.
k=\sqrt{131}-7 k=-\sqrt{131}-7
Subtract 7 from both sides of the equation.
k^{2}+14k-79=3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k^{2}+14k-79-3=3-3
Subtract 3 from both sides of the equation.
k^{2}+14k-79-3=0
Subtracting 3 from itself leaves 0.
k^{2}+14k-82=0
Subtract 3 from -79.
k=\frac{-14±\sqrt{14^{2}-4\left(-82\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 14 for b, and -82 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-14±\sqrt{196-4\left(-82\right)}}{2}
Square 14.
k=\frac{-14±\sqrt{196+328}}{2}
Multiply -4 times -82.
k=\frac{-14±\sqrt{524}}{2}
Add 196 to 328.
k=\frac{-14±2\sqrt{131}}{2}
Take the square root of 524.
k=\frac{2\sqrt{131}-14}{2}
Now solve the equation k=\frac{-14±2\sqrt{131}}{2} when ± is plus. Add -14 to 2\sqrt{131}.
k=\sqrt{131}-7
Divide -14+2\sqrt{131} by 2.
k=\frac{-2\sqrt{131}-14}{2}
Now solve the equation k=\frac{-14±2\sqrt{131}}{2} when ± is minus. Subtract 2\sqrt{131} from -14.
k=-\sqrt{131}-7
Divide -14-2\sqrt{131} by 2.
k=\sqrt{131}-7 k=-\sqrt{131}-7
The equation is now solved.
k^{2}+14k-79=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
k^{2}+14k-79-\left(-79\right)=3-\left(-79\right)
Add 79 to both sides of the equation.
k^{2}+14k=3-\left(-79\right)
Subtracting -79 from itself leaves 0.
k^{2}+14k=82
Subtract -79 from 3.
k^{2}+14k+7^{2}=82+7^{2}
Divide 14, the coefficient of the x term, by 2 to get 7. Then add the square of 7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+14k+49=82+49
Square 7.
k^{2}+14k+49=131
Add 82 to 49.
\left(k+7\right)^{2}=131
Factor k^{2}+14k+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+7\right)^{2}}=\sqrt{131}
Take the square root of both sides of the equation.
k+7=\sqrt{131} k+7=-\sqrt{131}
Simplify.
k=\sqrt{131}-7 k=-\sqrt{131}-7
Subtract 7 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}