Solve for k
k = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
k=-\frac{3}{4}=-0.75
Share
Copied to clipboard
k^{2}+\frac{25}{12}k+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-\frac{25}{12}±\sqrt{\left(\frac{25}{12}\right)^{2}-4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{25}{12} for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\frac{25}{12}±\sqrt{\frac{625}{144}-4}}{2}
Square \frac{25}{12} by squaring both the numerator and the denominator of the fraction.
k=\frac{-\frac{25}{12}±\sqrt{\frac{49}{144}}}{2}
Add \frac{625}{144} to -4.
k=\frac{-\frac{25}{12}±\frac{7}{12}}{2}
Take the square root of \frac{49}{144}.
k=-\frac{\frac{3}{2}}{2}
Now solve the equation k=\frac{-\frac{25}{12}±\frac{7}{12}}{2} when ± is plus. Add -\frac{25}{12} to \frac{7}{12} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
k=-\frac{3}{4}
Divide -\frac{3}{2} by 2.
k=-\frac{\frac{8}{3}}{2}
Now solve the equation k=\frac{-\frac{25}{12}±\frac{7}{12}}{2} when ± is minus. Subtract \frac{7}{12} from -\frac{25}{12} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
k=-\frac{4}{3}
Divide -\frac{8}{3} by 2.
k=-\frac{3}{4} k=-\frac{4}{3}
The equation is now solved.
k^{2}+\frac{25}{12}k+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
k^{2}+\frac{25}{12}k+1-1=-1
Subtract 1 from both sides of the equation.
k^{2}+\frac{25}{12}k=-1
Subtracting 1 from itself leaves 0.
k^{2}+\frac{25}{12}k+\left(\frac{25}{24}\right)^{2}=-1+\left(\frac{25}{24}\right)^{2}
Divide \frac{25}{12}, the coefficient of the x term, by 2 to get \frac{25}{24}. Then add the square of \frac{25}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+\frac{25}{12}k+\frac{625}{576}=-1+\frac{625}{576}
Square \frac{25}{24} by squaring both the numerator and the denominator of the fraction.
k^{2}+\frac{25}{12}k+\frac{625}{576}=\frac{49}{576}
Add -1 to \frac{625}{576}.
\left(k+\frac{25}{24}\right)^{2}=\frac{49}{576}
Factor k^{2}+\frac{25}{12}k+\frac{625}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+\frac{25}{24}\right)^{2}}=\sqrt{\frac{49}{576}}
Take the square root of both sides of the equation.
k+\frac{25}{24}=\frac{7}{24} k+\frac{25}{24}=-\frac{7}{24}
Simplify.
k=-\frac{3}{4} k=-\frac{4}{3}
Subtract \frac{25}{24} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}