Evaluate
k^{\frac{5}{12}}
Differentiate w.r.t. k
\frac{5}{12k^{\frac{7}{12}}}
Share
Copied to clipboard
\frac{k^{\frac{7}{6}}}{k^{\frac{3}{4}}}
To multiply powers of the same base, add their exponents. Add \frac{1}{2} and \frac{2}{3} to get \frac{7}{6}.
k^{\frac{5}{12}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract \frac{3}{4} from \frac{7}{6} to get \frac{5}{12}.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{k^{\frac{7}{6}}}{k^{\frac{3}{4}}})
To multiply powers of the same base, add their exponents. Add \frac{1}{2} and \frac{2}{3} to get \frac{7}{6}.
\frac{\mathrm{d}}{\mathrm{d}k}(k^{\frac{5}{12}})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract \frac{3}{4} from \frac{7}{6} to get \frac{5}{12}.
\frac{5}{12}k^{\frac{5}{12}-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{5}{12}k^{-\frac{7}{12}}
Subtract 1 from \frac{5}{12}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}