Solve for d (complex solution)
\left\{\begin{matrix}d=\frac{k\left(2x+m\right)}{x}\text{, }&x\neq 0\text{ and }x\neq -m\\d\in \mathrm{C}\text{, }&k=0\text{ and }x=0\text{ and }m\neq 0\end{matrix}\right.
Solve for k (complex solution)
\left\{\begin{matrix}k=\frac{dx}{2x+m}\text{, }&x\neq -\frac{m}{2}\text{ and }x\neq -m\\k\in \mathrm{C}\text{, }&d=0\text{ and }x=-\frac{m}{2}\text{ and }m\neq 0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=\frac{k\left(2x+m\right)}{x}\text{, }&x\neq 0\text{ and }x\neq -m\\d\in \mathrm{R}\text{, }&k=0\text{ and }x=0\text{ and }m\neq 0\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\frac{dx}{2x+m}\text{, }&x\neq -\frac{m}{2}\text{ and }x\neq -m\\k\in \mathrm{R}\text{, }&d=0\text{ and }x=-\frac{m}{2}\text{ and }m\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
k\left(x+m\right)=xd-kx
Multiply both sides of the equation by x+m.
kx+km=xd-kx
Use the distributive property to multiply k by x+m.
xd-kx=kx+km
Swap sides so that all variable terms are on the left hand side.
xd=kx+km+kx
Add kx to both sides.
xd=2kx+km
Combine kx and kx to get 2kx.
\frac{xd}{x}=\frac{k\left(2x+m\right)}{x}
Divide both sides by x.
d=\frac{k\left(2x+m\right)}{x}
Dividing by x undoes the multiplication by x.
k-\frac{xd-kx}{x+m}=0
Subtract \frac{xd-kx}{x+m} from both sides.
\frac{k\left(x+m\right)}{x+m}-\frac{xd-kx}{x+m}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply k times \frac{x+m}{x+m}.
\frac{k\left(x+m\right)-\left(xd-kx\right)}{x+m}=0
Since \frac{k\left(x+m\right)}{x+m} and \frac{xd-kx}{x+m} have the same denominator, subtract them by subtracting their numerators.
\frac{kx+km-xd+xk}{x+m}=0
Do the multiplications in k\left(x+m\right)-\left(xd-kx\right).
\frac{2kx+km-xd}{x+m}=0
Combine like terms in kx+km-xd+xk.
2kx+km-xd=0
Multiply both sides of the equation by x+m.
2kx+km=xd
Add xd to both sides. Anything plus zero gives itself.
\left(2x+m\right)k=xd
Combine all terms containing k.
\left(2x+m\right)k=dx
The equation is in standard form.
\frac{\left(2x+m\right)k}{2x+m}=\frac{dx}{2x+m}
Divide both sides by m+2x.
k=\frac{dx}{2x+m}
Dividing by m+2x undoes the multiplication by m+2x.
k\left(x+m\right)=xd-kx
Multiply both sides of the equation by x+m.
kx+km=xd-kx
Use the distributive property to multiply k by x+m.
xd-kx=kx+km
Swap sides so that all variable terms are on the left hand side.
xd=kx+km+kx
Add kx to both sides.
xd=2kx+km
Combine kx and kx to get 2kx.
\frac{xd}{x}=\frac{k\left(2x+m\right)}{x}
Divide both sides by x.
d=\frac{k\left(2x+m\right)}{x}
Dividing by x undoes the multiplication by x.
k-\frac{xd-kx}{x+m}=0
Subtract \frac{xd-kx}{x+m} from both sides.
\frac{k\left(x+m\right)}{x+m}-\frac{xd-kx}{x+m}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply k times \frac{x+m}{x+m}.
\frac{k\left(x+m\right)-\left(xd-kx\right)}{x+m}=0
Since \frac{k\left(x+m\right)}{x+m} and \frac{xd-kx}{x+m} have the same denominator, subtract them by subtracting their numerators.
\frac{kx+km-xd+xk}{x+m}=0
Do the multiplications in k\left(x+m\right)-\left(xd-kx\right).
\frac{2kx+km-xd}{x+m}=0
Combine like terms in kx+km-xd+xk.
2kx+km-xd=0
Multiply both sides of the equation by x+m.
2kx+km=xd
Add xd to both sides. Anything plus zero gives itself.
\left(2x+m\right)k=xd
Combine all terms containing k.
\left(2x+m\right)k=dx
The equation is in standard form.
\frac{\left(2x+m\right)k}{2x+m}=\frac{dx}{2x+m}
Divide both sides by m+2x.
k=\frac{dx}{2x+m}
Dividing by m+2x undoes the multiplication by m+2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}