Solve for k
k=\frac{28}{1-\delta }
\delta \neq 1
Solve for δ
\delta =\frac{k-28}{k}
k\neq 0
Share
Copied to clipboard
k-\delta k=28
Subtract \delta k from both sides.
\left(1-\delta \right)k=28
Combine all terms containing k.
\frac{\left(1-\delta \right)k}{1-\delta }=\frac{28}{1-\delta }
Divide both sides by -\delta +1.
k=\frac{28}{1-\delta }
Dividing by -\delta +1 undoes the multiplication by -\delta +1.
\delta k+28=k
Swap sides so that all variable terms are on the left hand side.
\delta k=k-28
Subtract 28 from both sides.
k\delta =k-28
The equation is in standard form.
\frac{k\delta }{k}=\frac{k-28}{k}
Divide both sides by k.
\delta =\frac{k-28}{k}
Dividing by k undoes the multiplication by k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}