Evaluate
4k+\frac{7}{4}
Share
Copied to clipboard
\frac{k}{\left(\frac{1}{2}\right)^{2}}+\left(\cos(60)\right)^{2}+\tan(60)\cos(30)
Get the value of \sin(30) from trigonometric values table.
\frac{k}{\frac{1}{4}}+\left(\cos(60)\right)^{2}+\tan(60)\cos(30)
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
k\times 4+\left(\cos(60)\right)^{2}+\tan(60)\cos(30)
Divide k by \frac{1}{4} by multiplying k by the reciprocal of \frac{1}{4}.
k\times 4+\left(\frac{1}{2}\right)^{2}+\tan(60)\cos(30)
Get the value of \cos(60) from trigonometric values table.
k\times 4+\frac{1}{4}+\tan(60)\cos(30)
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
k\times 4+\frac{1}{4}+\sqrt{3}\cos(30)
Get the value of \tan(60) from trigonometric values table.
k\times 4+\frac{1}{4}+\sqrt{3}\times \frac{\sqrt{3}}{2}
Get the value of \cos(30) from trigonometric values table.
k\times 4+\frac{1}{4}+\frac{\sqrt{3}\sqrt{3}}{2}
Express \sqrt{3}\times \frac{\sqrt{3}}{2} as a single fraction.
k\times 4+\frac{1}{4}+\frac{2\sqrt{3}\sqrt{3}}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 2 is 4. Multiply \frac{\sqrt{3}\sqrt{3}}{2} times \frac{2}{2}.
k\times 4+\frac{1+2\sqrt{3}\sqrt{3}}{4}
Since \frac{1}{4} and \frac{2\sqrt{3}\sqrt{3}}{4} have the same denominator, add them by adding their numerators.
k\times 4+\frac{1+6}{4}
Do the multiplications in 1+2\sqrt{3}\sqrt{3}.
k\times 4+\frac{7}{4}
Do the calculations in 1+6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}