Solve for j
j<-\frac{8}{3}
Share
Copied to clipboard
j+\frac{5}{12}<\frac{-3\times 3}{4}
Express -\frac{3}{4}\times 3 as a single fraction.
j+\frac{5}{12}<\frac{-9}{4}
Multiply -3 and 3 to get -9.
j+\frac{5}{12}<-\frac{9}{4}
Fraction \frac{-9}{4} can be rewritten as -\frac{9}{4} by extracting the negative sign.
j<-\frac{9}{4}-\frac{5}{12}
Subtract \frac{5}{12} from both sides.
j<-\frac{27}{12}-\frac{5}{12}
Least common multiple of 4 and 12 is 12. Convert -\frac{9}{4} and \frac{5}{12} to fractions with denominator 12.
j<\frac{-27-5}{12}
Since -\frac{27}{12} and \frac{5}{12} have the same denominator, subtract them by subtracting their numerators.
j<\frac{-32}{12}
Subtract 5 from -27 to get -32.
j<-\frac{8}{3}
Reduce the fraction \frac{-32}{12} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}