Skip to main content
Solve for x
Tick mark Image

Similar Problems from Web Search

Share

ix^{2}-3x-2i=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4i\times \left(-2i\right)}}{2i}
This equation is in standard form: ax^{2}+bx+c=0. Substitute i for a, -3 for b, and -2i for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4i\times \left(-2i\right)}}{2i}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-8}}{2i}
Multiply -4i times -2i.
x=\frac{-\left(-3\right)±\sqrt{1}}{2i}
Add 9 to -8.
x=\frac{-\left(-3\right)±1}{2i}
Take the square root of 1.
x=\frac{3±1}{2i}
The opposite of -3 is 3.
x=\frac{4}{2i}
Now solve the equation x=\frac{3±1}{2i} when ± is plus. Add 3 to 1.
x=-2i
Divide 4 by 2i.
x=\frac{2}{2i}
Now solve the equation x=\frac{3±1}{2i} when ± is minus. Subtract 1 from 3.
x=-i
Divide 2 by 2i.
x=-2i x=-i
The equation is now solved.
ix^{2}-3x-2i=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
ix^{2}-3x-2i-\left(-2i\right)=2i
Add 2i to both sides of the equation.
ix^{2}-3x=2i
Subtracting -2i from itself leaves 0.
\frac{ix^{2}-3x}{i}=\frac{2i}{i}
Divide both sides by i.
x^{2}+\left(-\frac{3}{i}\right)x=\frac{2i}{i}
Dividing by i undoes the multiplication by i.
x^{2}+3ix=\frac{2i}{i}
Divide -3 by i.
x^{2}+3ix=2
Divide 2i by i.
x^{2}+3ix+\left(\frac{3}{2}i\right)^{2}=2+\left(\frac{3}{2}i\right)^{2}
Divide 3i, the coefficient of the x term, by 2 to get \frac{3}{2}i. Then add the square of \frac{3}{2}i to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3ix-\frac{9}{4}=2-\frac{9}{4}
Square \frac{3}{2}i.
x^{2}+3ix-\frac{9}{4}=-\frac{1}{4}
Add 2 to -\frac{9}{4}.
\left(x+\frac{3}{2}i\right)^{2}=-\frac{1}{4}
Factor x^{2}+3ix-\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}i\right)^{2}}=\sqrt{-\frac{1}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}i=\frac{1}{2}i x+\frac{3}{2}i=-\frac{1}{2}i
Simplify.
x=-i x=-2i
Subtract \frac{3}{2}i from both sides of the equation.