Solve for f
f=-ix\left(y+3\right)
x\neq 0
Solve for x
\left\{\begin{matrix}x=-\frac{f}{iy+3i}\text{, }&f\neq 0\text{ and }y\neq -3\\x\neq 0\text{, }&y=-3\text{ and }f=0\end{matrix}\right.
Share
Copied to clipboard
if=xy+x\times 3
Multiply both sides of the equation by x.
if=xy+3x
The equation is in standard form.
\frac{if}{i}=\frac{x\left(y+3\right)}{i}
Divide both sides by i.
f=\frac{x\left(y+3\right)}{i}
Dividing by i undoes the multiplication by i.
f=-ix\left(y+3\right)
Divide x\left(3+y\right) by i.
if=xy+x\times 3
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
xy+x\times 3=if
Swap sides so that all variable terms are on the left hand side.
\left(y+3\right)x=if
Combine all terms containing x.
\frac{\left(y+3\right)x}{y+3}=\frac{if}{y+3}
Divide both sides by 3+y.
x=\frac{if}{y+3}
Dividing by 3+y undoes the multiplication by 3+y.
x=\frac{if}{y+3}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}