Solve for y
y=-\frac{1}{13}+\frac{8}{13}i\approx -0.076923077+0.615384615i
Share
Copied to clipboard
2i+2iy-3y=-1
Use the distributive property to multiply 2i by 1+y.
2i+\left(-3+2i\right)y=-1
Combine 2iy and -3y to get \left(-3+2i\right)y.
\left(-3+2i\right)y=-1-2i
Subtract 2i from both sides.
y=\frac{-1-2i}{-3+2i}
Divide both sides by -3+2i.
y=\frac{\left(-1-2i\right)\left(-3-2i\right)}{\left(-3+2i\right)\left(-3-2i\right)}
Multiply both numerator and denominator of \frac{-1-2i}{-3+2i} by the complex conjugate of the denominator, -3-2i.
y=\frac{\left(-1-2i\right)\left(-3-2i\right)}{\left(-3\right)^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
y=\frac{\left(-1-2i\right)\left(-3-2i\right)}{13}
By definition, i^{2} is -1. Calculate the denominator.
y=\frac{-\left(-3\right)-\left(-2i\right)-2i\left(-3\right)-2\left(-2\right)i^{2}}{13}
Multiply complex numbers -1-2i and -3-2i like you multiply binomials.
y=\frac{-\left(-3\right)-\left(-2i\right)-2i\left(-3\right)-2\left(-2\right)\left(-1\right)}{13}
By definition, i^{2} is -1.
y=\frac{3+2i+6i-4}{13}
Do the multiplications in -\left(-3\right)-\left(-2i\right)-2i\left(-3\right)-2\left(-2\right)\left(-1\right).
y=\frac{3-4+\left(2+6\right)i}{13}
Combine the real and imaginary parts in 3+2i+6i-4.
y=\frac{-1+8i}{13}
Do the additions in 3-4+\left(2+6\right)i.
y=-\frac{1}{13}+\frac{8}{13}i
Divide -1+8i by 13 to get -\frac{1}{13}+\frac{8}{13}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}