Solve for d
d=\frac{2\pi n_{1}i}{\ln(\frac{x+y}{z})}+\frac{3\pi i}{2\ln(\frac{x+y}{z})}
n_{1}\in \mathrm{Z}
x\neq z-y\text{ and }x\neq -y\text{ and }z\neq 0
Solve for x
x=-\left(y-ze^{-\frac{2i\pi n_{1}Re(d)}{\left(Re(d)\right)^{2}+\left(Im(d)\right)^{2}}-\frac{2\pi n_{1}Im(d)}{\left(Re(d)\right)^{2}+\left(Im(d)\right)^{2}}+\frac{\pi \left(3Im(d)+3iRe(d)\right)}{2\left(\left(Re(d)\right)^{2}+\left(Im(d)\right)^{2}\right)}}\right)
n_{1}\in \mathrm{Z}
z\neq 0\text{ and }\left(Re(d)\right)^{2}+\left(Im(d)\right)^{2}\neq 0
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}