Solve for g
g=-\frac{\sqrt{2}\left(1+3x-2x^{2}\right)}{2\left(ix-i\right)}
x\neq 1
Solve for x
x=\frac{-\sqrt{-2g^{2}-2\sqrt{2}ig+17}+\sqrt{2}ig+3}{4}
x=\frac{\sqrt{-2g^{2}-2\sqrt{2}ig+17}+\sqrt{2}ig+3}{4}
Share
Copied to clipboard
i\sqrt{2}gx-ig\sqrt{2}=2x^{2}-3x-1
Use the distributive property to multiply i\sqrt{2}g by x-1.
\sqrt{2}igx-\sqrt{2}ig=2x^{2}-3x-1
Reorder the terms.
\sqrt{2}igx-i\sqrt{2}g=2x^{2}-3x-1
Multiply -1 and i to get -i.
\left(\sqrt{2}ix-i\sqrt{2}\right)g=2x^{2}-3x-1
Combine all terms containing g.
g\left(\sqrt{2}ix-\sqrt{2}i\right)=2x^{2}-3x-1
Reorder the terms.
\left(\sqrt{2}ix-\sqrt{2}i\right)g=2x^{2}-3x-1
The equation is in standard form.
\frac{\left(\sqrt{2}ix-\sqrt{2}i\right)g}{\sqrt{2}ix-\sqrt{2}i}=\frac{2x^{2}-3x-1}{\sqrt{2}ix-\sqrt{2}i}
Divide both sides by i\sqrt{2}x-i\sqrt{2}.
g=\frac{2x^{2}-3x-1}{\sqrt{2}ix-\sqrt{2}i}
Dividing by i\sqrt{2}x-i\sqrt{2} undoes the multiplication by i\sqrt{2}x-i\sqrt{2}.
g=\frac{\sqrt{2}\left(2x^{2}-3x-1\right)}{2\left(ix-i\right)}
Divide 2x^{2}-3x-1 by i\sqrt{2}x-i\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}