Solve for c
\left\{\begin{matrix}\\c=0\text{, }&\text{unconditionally}\\c\in \mathrm{C}\text{, }&\psi _{1}=0\text{ or }m=0\end{matrix}\right.
Solve for m
\left\{\begin{matrix}\\m=0\text{, }&\text{unconditionally}\\m\in \mathrm{C}\text{, }&\psi _{1}=0\text{ or }c=0\end{matrix}\right.
Share
Copied to clipboard
mc^{2}\psi _{1}=iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t}
Swap sides so that all variable terms are on the left hand side.
c^{2}=\frac{0}{m\psi _{1}}
Dividing by m\psi _{1} undoes the multiplication by m\psi _{1}.
c^{2}=0
Divide 0 by m\psi _{1}.
c=0 c=0
Take the square root of both sides of the equation.
c=0
The equation is now solved. Solutions are the same.
mc^{2}\psi _{1}=iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t}
Swap sides so that all variable terms are on the left hand side.
mc^{2}\psi _{1}-iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t}=0
Subtract iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t} from both sides.
-iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t}+m\psi _{1}c^{2}=0
Reorder the terms.
m\psi _{1}c^{2}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
c=\frac{0±\sqrt{0^{2}}}{2m\psi _{1}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute m\psi _{1} for a, 0 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{0±0}{2m\psi _{1}}
Take the square root of 0^{2}.
c=\frac{0}{2m\psi _{1}}
Multiply 2 times m\psi _{1}.
c=0
Divide 0 by 2m\psi _{1}.
mc^{2}\psi _{1}=iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t}
Swap sides so that all variable terms are on the left hand side.
\psi _{1}c^{2}m=0
The equation is in standard form.
m=0
Divide 0 by c^{2}\psi _{1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}